Skip to main content
Log in

A computational study of the optoelectronic and thermoelectric properties of HfIrX (X = As, Sb and Bi) in the cubic LiAlSi-type structure

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We have systematically investigated the structural, electronic, optical and thermoelectric properties of HfIrX (X = As, Sb and Bi) belonging to the 18 valence electron ABX family using first-principles density functional theory calculations. In the first phase, the structural parameters of HfIrX (X = As, Sb and Bi) in the cubic LiAlSi-type (F-43 m) structure such as the lattice parameters, the bulk modulus (B) and their pressure derivative \((B^\prime )\) are calculated using the full-potential linearized augmented plane wave method within the generalized gradient approximation GGA-PBEsol. In the second phase, investigations of electronic and optical properties were treated by the TB-mBJ exchange-correlation potentials. The third phase is devoted to the interpretation and prediction of the thermoelectric performance of our compounds by combining the results of ab initio band structure calculations and Boltzmann transport theory in conjunction with rigid band and constant relaxation time (\(\tau )\) approximations as incorporated in the BoltzTraP code. We note that, because of the existence of heavy elements in our compounds, spin–orbit coupling is added for both electronic and thermoelectric calculations in order to test the effect of spin–orbit interaction on these properties. Our results are compared with other theoretical and experimental data and provide guidance for practical applications in the fields of optoelectronics and thermoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gautier, R., Zhang, X., Linhua, H., Liping, Y., Lin, Y., Sunde, T.O.L., Chon, D., Poeppelmeier, K.R., Zunger, A.: Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 7, 308–316 (2015)

    Article  Google Scholar 

  2. Toboła, J., Pierre, J.: Electronic phase diagram of the XTZ (X = Fe Co, Ni; T = Ti, V, Zr, Nb, Mn; Z = Sn, Sb) semi-Heusler compounds. J. Alloys Compd. 296(10), 243–252 (2000)

    Article  Google Scholar 

  3. Hong, A.J., Gong, J.J., Li, L., Yan, Z.B., Ren, Z.F., Predicting, J.-M.L.: high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron–phonon coupling and strong bonding anharmonicity. J. Mater. Chem. C 4, 3281–3289 (2016)

    Article  Google Scholar 

  4. Curtarolo, S., et al.: The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013)

    Article  Google Scholar 

  5. Gruhn, T.: Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys. Rev. B 82, 125210 (2010)

    Article  Google Scholar 

  6. Casper, F., Graf, T., Chadov, S., Balke, B., Felser, C.: Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001 (2012)

    Article  Google Scholar 

  7. Yang, J., et al.: Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008)

    Article  Google Scholar 

  8. Sjöstedt, E., Nordström, L., Singh, D.J.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000)

    Article  Google Scholar 

  9. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–1138 (1965)

    Article  MathSciNet  Google Scholar 

  10. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN 2 K, an augmented plane wave + local orbitals program for calculating crystal properties. In: Schwarz, K. (ed.) Techn. Universität, Wien (2001)

  11. Gzyl, H.: Integration of the Boltzmann equation in the relaxation time approximation. J. Stat. Phys. 29, 617 (1982)

    Article  MathSciNet  Google Scholar 

  12. Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)

    Article  Google Scholar 

  13. Madsen, G.K.H.: Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc 128, 12140–12146 (2006)

    Article  Google Scholar 

  14. Madsen, G.K.H., Singh, D.J.: BoltzTraP: a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    Article  MATH  Google Scholar 

  15. Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  16. Lee, M.-S., Poudeu, F.P., Mahanti, S.D.: Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds. Phys. Rev. B 83, 085204 (2011)

    Article  Google Scholar 

  17. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003)

    Article  Google Scholar 

  18. Heyd, J., Scuseria, G.E.: Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004)

    Article  Google Scholar 

  19. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  20. Wang, G., Wei, J.H.: Topological phase transition in half-Heusler compounds HfIrX (X = As, Sb, Bi). Comput. Mater. Sci. 124, 311–315 (2016)

    Article  Google Scholar 

  21. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  Google Scholar 

  22. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Nat. Acad. Sci. USA 30, 244–247 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tran, F., Blaha, P., Betzinger, M., Blügel, S.: Accurate band gaps of semiconductors and insulators with a semilocal exchange correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  24. MacDonald, A.H., Picket, W.E., Koelling, D.D.: A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions. Solid State Phys. 13, 2675–2683 (1980)

    Article  Google Scholar 

  25. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

  26. Pack, J.D., Monkhorst, H.J.: Special points for Brillouin-zone integrations: a reply. Phys. Rev. 16, 1748–1749 (1977)

    Article  Google Scholar 

  27. Wooten, F.: Optical Properties of Solids. Academic Press, New York (1972)

    Google Scholar 

  28. Lee, M.-S., Mahanti, S.D.: Validity of the rigid band approximation in the study of the thermopower of narrow band gap semiconductors. Phys. Rev. B 85, 165149 (2012)

    Article  Google Scholar 

  29. Xia, Y., Bhattacharya, S., Ponnambalam, V., Pope, A.L., Poon, S.J., Tritt, T.M.: Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases. J. Appl. Phys. 88, 1952 (2000)

    Article  Google Scholar 

  30. Sekimoto, T., Kurosaki, K., Muta, H., Yamanaka, S.: High-thermoelectric figure of merit realized in p-type half-Heusler compounds: \(\text{ ZrCoSn }_{x}\text{ Sb }_{1-x}\). Jpn. J. Appl. Phys. 46, 25–28 (2007)

    Article  Google Scholar 

  31. Benallou, Y., Amara, K., Doumi, B., et al.: Structural stability, electronic structure, and novel transport properties with high thermoelectric performances of ZrIrX (X = As, Bi, and Sb). J. Comput. Electron. (2016). doi:10.1007/s10825-016-0937-8

  32. Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2, 163 (1973)

    Article  Google Scholar 

  33. Ehrenreich, H., Cohen, M.L.: Self-consistent field approach to the many-electron problem. Phys. Rev. 115, 786 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jana, D., Sun, C.L., Chen, L.C., Chen, K.H.: Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog. Mater. Sci. 58, 565–635 (2013)

    Article  Google Scholar 

  35. Yang, M.N., Chang, B., Hao, G., Guo, J., Wang, H., Wang, M.: Comparison of optical properties between Wurtzite and zinc-blende \(\text{ Ga }_{0.75}\text{ Al }_{0.25}\text{ N }\). Optik 125, 424–427 (2014)

    Article  Google Scholar 

  36. Penn, D.R.: Wave-Number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    Article  MATH  Google Scholar 

  37. Hong, B.S., Ford, S.J., Mason, T.O.: Mason equilibrium electrical property measurements in electroceramics. Key Eng. Mater. 125–126, 163–186 (1997)

    Article  Google Scholar 

  38. Smits, F.M.: Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J. 37, 711–718 (1958)

    Article  Google Scholar 

  39. McLachlan, D.S., Blaszkiewicz, M., Newnham, R.E.: Electrical resistivity of composites. J. Am. Ceram. Soc 73, 2187–2203 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Arbouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chibani, S., Arbouche, O., Amara, K. et al. A computational study of the optoelectronic and thermoelectric properties of HfIrX (X = As, Sb and Bi) in the cubic LiAlSi-type structure. J Comput Electron 16, 765–775 (2017). https://doi.org/10.1007/s10825-017-1008-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1008-5

Keywords

Navigation