Skip to main content
Log in

Quantum dynamics of optical phonons generated by optical excitation of a quantum dot

A Wigner function analysis

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The study of the fundamental properties of phonons is crucial to understand their role in applications in quantum information science, where the active use of phonons is currently highly debated. A genuine quantum phenomenon associated with the fluctuation properties of phonons is squeezing, which is achieved when the fluctuations of a certain variable drop below their respective vacuum values. We consider a semiconductor quantum dot (QD) in which the exciton is coupled to phonons. We review the fluctuation properties of the phonons, which are generated by optical manipulation of the QD, in the limiting case of ultra-short pulses. Then, we discuss the phonon properties for an excitation with finite pulses. Within a generating function formalism, we calculate the corresponding fluctuation properties of the phonons and show that phonon squeezing can be achieved by the optical manipulation of the QD exciton for certain conditions even for a single-pulse excitation where neither for short nor for long pulses squeezing occurs. To explain the occurrence of squeezing, we employ a Wigner function picture providing a detailed understanding of the induced quantum dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Volz, S., Ordonez-Miranda, J., Shchepetov, A., Prunnila, M., Ahopelto, J., Pezeril, T., Vaudel, G., Gusev, V., Ruello, P., Weig, E.M., Schubert, M., Hettich, M., Grossman, M., Dekorsy, T., Alzina, F., Graczykowski, E., Chavez-Angel, E., Reparaz, J.S., Wagner, M.R., Sotomayor-Torres, C.M., Xiong, S., Neogi, S., Donadio, D.: Nanophononics: state of the art and perspectives. Eur. Phys. J. B 89, 1–20 (2016)

    Article  Google Scholar 

  2. Brüggemann, C., Akimov, A.V., Scherbakov, A.V., Bombeck, M., Schneider, C., Höfling, S., Forchel, A., Yakovlev, D.R., Yakovlev, D.R., Bayer, M.: Laser mode feeding by shaking quantum dots in a planar microcavity. Nat. Photon. 6, 30–34 (2011)

    Article  Google Scholar 

  3. Czerniuk, T., Brüggemann, C., Tepper, J., Brodbeck, S., Schneider, C., Kamp, M., Höfling, B.A., Glavin, S., Yakovlev, D.R., Akimov, A.V., Bayer, M.: Lasing from active optomechanical resonators. Nat. Commun. 5, 4038 (2014)

    Article  Google Scholar 

  4. Stotz, J.A.H., Hey, R., Santos, P.V., Ploog, K.H.: Coherent spin transport through dynamic quantum dots. Nat. Mater. 4, 585–588 (2005)

    Article  Google Scholar 

  5. Völk, S., Schulein, F.J.R., Knall, F., Reuter, D., Wieck, A.D., Truong, T.A., Kim, H., Petroff, P.M., Wixforth, A., Krenner, H.J.: Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves. Nano Lett. 10, 3399–3407 (2010)

    Article  Google Scholar 

  6. Fuhrmann, D.A., Thon, S.M., Kim, H., Bouwmeester, D., Petroff, P.M., Wixforth, A., Krenner, H.J.: Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nat. Photon. 5, 605–609 (2011)

    Article  Google Scholar 

  7. Weiß, M., Kinzel, J.B., Schülein, F.J.R., Heigl, M., Rudolph, D., Morkötter, S., Döblinger, M., Bichler, M., Abstreiter, G., Finley, J.J., Koblmüller, G., Wixforth, A., Krenner, H.J.: Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires. Nano Lett. 14, 2256–2264 (2014)

    Article  Google Scholar 

  8. Gustafsson, M.V., Aref, T., Kockum, A.F., Ekström, M.K., Johansson, G., Delsing, P.: Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014)

    Article  Google Scholar 

  9. Kerfoot, M.L., Govorov, A.O., Scheibner, M.: Optophononics with coupled quantum dots. Nat. Commun. 5, 3299 (2014)

    Article  Google Scholar 

  10. Nakamura, K.G., Shikano, Y., Kayanuma, Y.: Influence of pulse width and detuning on coherent phonon generation. Phys. Rev. B 92, 144304 (2015)

    Article  Google Scholar 

  11. Kabuss, J., Carmele, A., Brandes, T., Knorr, A.: Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Phys. Rev. Lett. 109, 054301 (2012)

    Article  Google Scholar 

  12. Dodonov, V.V.: ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B 4, R1 (2002)

    Article  MathSciNet  Google Scholar 

  13. Polzik, E.S.: Quantum physics: the squeeze goes on. Nature 453, 45–46 (2008)

    Article  Google Scholar 

  14. Drummond, P.D., Ficek, Z.: Quantum Squeezing, vol. 27. Springer-Verlag Berlin Heidelberg, New York (2013)

  15. Goda, K., Miyakawa, O., Mikhailov, E.E., Saraf, S., Adhikari, R., McKenzie, K., Ward, R., Vass, S., Weinstein, A.J., Mavalvala, N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008)

    Article  Google Scholar 

  16. Janszky, J., Vinogradov, A.V.: Squeezing via one-dimensional distribution of coherent states. Phys. Rev. Lett. 64, 2771 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, X., Nori, F.: Squeezed phonon states: modulating quantum fluctuations of atomic displacements. Phys. Rev. Lett. 76, 2294 (1996)

    Article  Google Scholar 

  18. Sauer, S., Daniels, J.M., Reiter, D.E., Kuhn, T., Vagov, A., Axt, V.M.: Lattice fluctuations at a double phonon frequency with and without squeezing: an exactly solvable model of an optically excited quantum dot. Phys. Rev. Lett. 105, 157401 (2010)

    Article  Google Scholar 

  19. Papenkort, T., Axt, V.M., Kuhn, T.: Optical excitation of squeezed longitudinal optical phonon states in an electrically biased quantum well. Phys. Rev. B 85, 235317 (2012)

    Article  Google Scholar 

  20. Zijlstra, E.S., Kalitsov, A., Zier, T., Garcia, M.E.: Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence. Phys. Rev. X 3, 011005 (2013)

    Google Scholar 

  21. Garrett, G.A., Rojo, A.G., Sood, A.K., Whitaker, J.F., Merlin, R.: Vacuum squeezing of solids: macroscopic quantum states driven by light pulses. Science 275, 1638–1640 (1997)

    Article  Google Scholar 

  22. Misochko, O.V.: Implication of phase-dependent noise of coherent phonons in \(\text{ YBa }_2\text{ Cu }_3\text{ O }_7- \delta \). Phys. Lett. A 269, 97–102 (2000)

    Article  Google Scholar 

  23. Johnson, S.L., Beaud, P., Vorobeva, E., Milne, C.J., Murray, É.D., Fahy, S., Ingold, G.: Directly observing squeezed phonon states with femtosecond X-ray diffraction. Phys. Rev. Lett. 102, 175503 (2009)

    Article  Google Scholar 

  24. Esposito, M., Titimbo, K., Zimmermann, K., Giusti, F., Randi, F., Boschetto, D., Parmigiani, F., Floreanini, R., Benatti, F., Fausti, D.: Photon number statistics uncover the fluctuations in non-equilibrium lattice dynamics. Nat. Commun. 6, 10249 (2015)

    Article  Google Scholar 

  25. Vagov, A., Axt, V.M., Kuhn, T.: Electron–phonon dynamics in optically excited quantum dots: exact solution for multiple ultrashort laser pulses. Phys. Rev. B 66, 165312 (2002)

    Article  Google Scholar 

  26. Axt, V.M., Kuhn, T., Vagov, A., Peeters, F.M.: Phonon-induced pure dephasing in exciton–biexciton quantum dot systems driven by ultrafast laser pulse sequences. Phys. Rev. B 72, 125309 (2005)

    Article  Google Scholar 

  27. Wigger, D., Reiter, D.E., Axt, V.M., Kuhn, T.: Fluctuation properties of acoustic phonons generated by ultrafast optical excitation of a quantum dot. Phys. Rev. B 87, 085301 (2013)

    Article  Google Scholar 

  28. Wigger, D., Lüker, S., Reiter, D.E., Axt, V.M., Machnikowski, P., Kuhn, T.: Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot. J. Phys. Condens. Matter 26, 355802 (2014)

    Article  Google Scholar 

  29. Wigger, D., Lüker, S., Axt, V.M., Reiter, D.E., Kuhn, T.: Squeezed phonon wave packet generation by optical manipulation of a quantum dot. Photonics 2, 214–227 (2015)

    Article  Google Scholar 

  30. Stauber, T., Zimmermann, R., Castella, H.: Electron–phonon interaction in quantum dots: a solvable model. Phys. Rev. B 62, 7336 (2000)

    Article  Google Scholar 

  31. Reiter, D.E., Wigger, D., Axt, V.M., Kuhn, T.: Generation and dynamics of phononic cat states after optical excitation of a quantum dot. Phys. Rev. B 84, 195327 (2011)

    Article  Google Scholar 

  32. Axt, V.M., Herbst, M., Kuhn, T.: Coherent control of phonon quantum beats. Superlattices Microstruct. 26, 117–128 (1999)

    Article  Google Scholar 

  33. Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2011)

  34. Janszky, J., Adam, P., Vinogradov, A.V., Kobayashi, T.: Influence of phonon squeezing on the transient spectrum. Spectrochim. Acta 48, 31–39 (1992)

  35. Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  36. Haroche, S., Raimond, J.M.: Exploring the Quantum. Oxford Univ. Press, Oxford (2006)

    Book  MATH  Google Scholar 

  37. Schulte, C.H.H., Hansom, J., Jones, A.E., Matthiesen, C., Le Gall, C., Atatüre, M.: Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilmann Kuhn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wigger, D., Gehring, H., Axt, V.M. et al. Quantum dynamics of optical phonons generated by optical excitation of a quantum dot. J Comput Electron 15, 1158–1169 (2016). https://doi.org/10.1007/s10825-016-0856-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0856-8

Keywords

Navigation