Skip to main content
Log in

Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rempe, F. Schmidt-Kaler, and H. Walther, Phys. Rev. Lett. 64, 2783 (1990).

    Article  ADS  Google Scholar 

  2. A. V. Poshakinskiy and A. N. Poddubny, J. Exp. Theor. Phys. 118 (2), 205 (2014).

    Article  ADS  Google Scholar 

  3. C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G. Raizen, Phys. Rev. Lett. 95, 260403 (2005).

    Article  ADS  Google Scholar 

  4. Th. Jacqmin, J. Armijo, T. Berrada, K. V. Kheruntsyan, and I. Bouchoule, Phys. Rev. Lett. 106, 230405 (2011).

    Article  ADS  Google Scholar 

  5. T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, Nature (London) 463, 72 (2010).

    Article  ADS  Google Scholar 

  6. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, Nature (London) 464, 697 (2010).

    Article  ADS  Google Scholar 

  7. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature (London) 478, 89 (2011).

    Article  ADS  Google Scholar 

  8. W. Kütt, W. Albrecht, and H. Kurz, IEEE J. Quantum Electron. 28, 2434 (1992).

    Article  ADS  Google Scholar 

  9. A. Bartels, Th. Dekorsy, and H. Kurz, Phys. Rev. Lett. 82, 1044 (1999).

    Article  ADS  Google Scholar 

  10. Y. Ezzahri, S. Grauby, J. M. Rampnoux, H. Michel, G. Pernot, W. Claeys, S. Dilhaire, C. Rossignol, G. Zeng, and A. Shakouri, Phys. Rev. B: Condens. Matter 75, 195309 (2007).

    Article  ADS  Google Scholar 

  11. I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Phys. Rev. Lett. 110, 127202 (2013).

    Article  ADS  Google Scholar 

  12. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 104, 083901 (2010).

    Article  ADS  Google Scholar 

  13. K. Vahala, M. Hermann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and Th. Udem, Nat. Phys. 5, 682 (2009).

    Article  Google Scholar 

  14. H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, Phys. Rev. Lett. 113, 053604 (2014).

    Article  ADS  Google Scholar 

  15. H. Wang, Z. Wang, J. Zhang, S. K. Özdemir, L. Yang, and Y. Liu, Phys. Rev. A: At., Mol., Opt. Phys. 90, 053814 (2014).

    Article  ADS  Google Scholar 

  16. H. Wu, G. Heinrich, and F. Marquardt, New J. Phys. 15, 123022 (2013).

    Article  ADS  Google Scholar 

  17. J. Kabuss, A. Carmele, T. Brandes, and A. Knorr, Phys. Rev. Lett. 109, 054301 (2012).

    Article  ADS  Google Scholar 

  18. J. Kabuss, A. Carmele, and A. Knorr, Phys. Rev. B: Condens. Matter 88, 064305 (2013).

    Article  ADS  Google Scholar 

  19. R. Okuyama, M. Eto, and T. Brandes, New J. Phys. 15, 083032 (2013).

    Article  ADS  Google Scholar 

  20. A. B. Bhattacherjee and T. Brandes, Can. J. Phys. 91, 639 (2013).

    Article  ADS  Google Scholar 

  21. T. Figueiredo Roque and A. Vidiella-Barranco, arXiv:1406.1987v3 [quant-ph].

  22. P. D. Nation, Phys. Rev. A: At., Mol., Opt. Phys. 88, 053828 (2013).

    Article  ADS  Google Scholar 

  23. M. Merlo, F. Haupt, F. Cavaliere, and M. Sassetti, New J. Phys. 10, 023008 (2008).

    Article  ADS  Google Scholar 

  24. A. Kronwald, F. Marquardt, and A. A. Clerk, Phys. Rev. A: At., Mol., Opt. Phys. 88, 063833 (2013).

    Article  ADS  Google Scholar 

  25. J. Qian, A. A. Clerk, K. Hammerer, and F. Marquardt, Phys. Rev. Lett. 109, 253601 (2012).

    Article  ADS  Google Scholar 

  26. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  27. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, Phys. Rev. Lett. 89, 227402 (2002).

    Article  ADS  Google Scholar 

  28. N. D. Lanzillotti-Kimura, A. Fainstein, B. Perrin, B. Jusserand, L. Largeau, O. Mauguin, and A. Lemaitre, Phys. Rev. B: Condens. Matter 83, 201103 (2011).

    Article  ADS  Google Scholar 

  29. Ö. O. Soykal, R. Ruskov, and Ch. Tahan, Phys. Rev. Lett. 107, 235502 (2011).

    Article  ADS  Google Scholar 

  30. H. Kim, Th. C. Shen, K. Roy-Choudhury, G. S. Solomon, and E. Waks, Phys. Rev. Lett. 113, 027403 (2014).

    Article  ADS  Google Scholar 

  31. M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  32. M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, Prog. Opt. 55, 85 (2010).

    Article  Google Scholar 

  33. D. F. V. James, Fortschr. Phys. 48, 823 (2000).

    Article  Google Scholar 

  34. R. Tan, G.-X. Li, and Z. Ficek, Phys. Rev. A: At., Mol., Opt. Phys. 78, 023833 (2008).

    Article  ADS  Google Scholar 

  35. S. Y. Kilin, Sov. Phys. JETP 51 (6), 1081 (1980).

    ADS  Google Scholar 

  36. M. Macovei, J. Evers, G.-X. Li, and C. H. Keitel, Phys. Rev. Lett. 98, 043602 (2007).

    Article  ADS  Google Scholar 

  37. T. Quang, P. L. Knight, and V. Buzek, Phys. Rev. A: At., Mol., Opt. Phys. 44, 6092 (1991).

    Article  ADS  Google Scholar 

  38. R. J. Glauber, Phys. Rev. 130, 2529 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  39. C. Ginzel, H.-J. Briegel, U. Martini, B.-G. Englert, and A. Schenzle, Phys. Rev. A: At., Mol., Opt. Phys. 48, 732 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ceban.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceban, V., Macovei, M.A. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter. J. Exp. Theor. Phys. 121, 793–798 (2015). https://doi.org/10.1134/S1063776115110114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115110114

Keywords

Navigation