Skip to main content

Advertisement

Log in

An energy-preserving discretization for the Poisson–Nernst–Planck equations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The Poisson–Nernst–Planck (PNP) equations have recently been used to describe the dynamics of ion transport through biological ion channels besides being widely employed in semiconductor industry. This paper is about the design of a numerical scheme to solve the PNP equations that preserves exactly (up to roundoff error) a discretized form of the energy dynamics of the system. The proposed finite difference scheme is of second-order accurate in both space and time. Comparisons are made between this energy dynamics-preserving scheme and a standard finite difference scheme, showing a difference in satisfying the energy law. Numerical results are presented for validating the orders of convergence in both time and space of the new scheme for the PNP system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Britz, D., Strutwolf, J.: Several ways to simulate time dependent liquid junction potentials by finite differences. Electrochim. Acta. 137, 328–335 (2014)

    Article  Google Scholar 

  2. Chaudhry, J., Comer, J., Aksimentiev, A., Olson, L.: A stabilized finite element method for modified Poisson–Nernst–Planck equations to determine ion flow through a nanopore. Commun. Comput. Phys. 15(1), 93–125 (2014)

    Article  MathSciNet  Google Scholar 

  3. Doyle, D., Cabral, J.M., Pfuetzner, R.A., Kuo, J.G., Cohen, S., Chait, B., MacKinnon, R.: The structure of the potassium channel: molecular basis of \(\text{K}^+\) conduction and selectivity. Science 280, 69–77 (1998)

  4. Eisenberg, R.: Ion channels in biological membranes: electrostatic analysis of a natural nanotube. Contemp. Phys. 39, 447 (1998)

    Article  Google Scholar 

  5. Flavell, A., Machen, M., Eisenberg, B., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck equations. J. Comput. Electron. 13, 235–249 (2014)

    Article  Google Scholar 

  6. Fogolari, F., Briggs, J.: On the variational approach to Poisson–Boltzmann free energies. Chem. Phys. Lett. 281, 135–139 (1997)

    Article  Google Scholar 

  7. Gagneux, G., Millet, O.: A survey on properties of Nernst–Planck–Poisson system. application to ionic transport in porous media. Appl. Math. Model. 40, 846–858 (2016)

    Article  MathSciNet  Google Scholar 

  8. Gardner, C., Nonner, W., Eisenberg, R.: Electrodiffusion model simulation of ionic channels: 1D simulations. J. Comput. Electron. 3, 25–31 (2004)

    Article  Google Scholar 

  9. Gillespie, D.: A Singular Perturbation Analysis of the Poisson–Nernst–Planck System. Ph.D. thesis, Rush University (1999)

  10. Gillespie, D.: Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys. J. 94, 1169–1984 (2008)

    Article  Google Scholar 

  11. He, D., Pan, K.: An Energy Preserving Finite Difference Scheme for the Poisson–Nernst–Planck System. arXiv:1506.0025v1 (2015)

  12. Hyon, Y., Eisenberg, R., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ji, S., Liu, W., Zhang, M.: Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson–Nernst–Planck models. SIAM J. Appl. Math. 75(1), 114–135 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, C., Lee, H., Hyon, Y., Lin, T., Liu, C.: New Poisson–Boltzmann type equations: one-dimensional solutions. Nonlinearity 24, 431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, C., Kelly, R.: The use of finite element methods (fem) in the modeling of localized corrosion. Electrochem. Soc. Interface 23(4), 47–51 (2014)

    Article  Google Scholar 

  16. Liu, C., Metti, M., Xu, J.: Energetically stable discretizations for charge carrier transport and electrokinetic models. arXiv:1503.04471v1 (2015)

  17. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)

    Book  MATH  Google Scholar 

  19. Mirzadeh, M., Gibou, F.: A conservative discretization of the Poisson–Nernst–Planck equations on adaptive cartesian grids. J. Comput. Phys. 274, 633–653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pittino, F., Selmi, L.: Use and comparative assessment of the CVFEM method for Poisson–Boltzmann and Poisson–Nernst–Planck three dimensional simulations of impedimetric nano-biosensors operated in the DC and AC small signal regimes. Comput. Methods Appl. Mech. Eng. 278, 902–923 (2014)

    Article  MathSciNet  Google Scholar 

  21. Tu, B., Xie, Y., Zhang, L., Lu, B.: Stabilized finite element methods to simulate the conductances of ion channels. Comput. Phys. Commun. 188, 131–139 (2015)

    Article  MATH  Google Scholar 

  22. Xu, Z., Ma, M., Liu, P.: Self-energy-modified Poisson–Nernst–Planck equations: WKB approximation and finite-difference approaches. Phys. Rev. E 90(1), 013,307 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by NSF under the grant DMS-1620449. The authors would like to thank Bob Eisenberg and Chun Liu for helpful discussion on the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julienne Kabre.

Appendix: The local truncation error of the energy-preserving scheme (23)

Appendix: The local truncation error of the energy-preserving scheme (23)

In this “Appendix: The local truncation error of the energy-preserving scheme (23),” we show that the local truncation error of our scheme (23) is of second order in both space and time to the Nernst–Planck Eq. (5a) with the chemical potential defined in (2).

First, we define the functions \(\mu _{i,-}\) and \(\mu _{i,+}\) corresponding to the discrete counterparts in (21) and (22), respectively,

$$\begin{aligned}&\mu _{i,-}(x,t) {:=} k_\mathrm{B} T \left[ \log \frac{c_{i}(x,t)}{c_{i,0}} + c_{i}(x,t) g_1 (x,t) \right] \nonumber \\&\qquad + z_i e \phi (x,t), \end{aligned}$$
(53)
$$\begin{aligned}&\mu _{i,+}(x,t) {:=} k_\mathrm{B} T \left[ \log \frac{c_{i}(x,t)}{c_{i,0}} + c_{i}(x,t) g_1(x,t+\Delta t) \right] \nonumber \\&\qquad + z_i e \phi (x,t), \end{aligned}$$
(54)

where \(g_1\) is defined by

$$\begin{aligned} g_1(x,t) {:=} \frac{\log (\frac{c_{i}(x,t)}{c_{i,0}})-\log (\frac{c_{i}(x,t-\Delta t)}{c_{i,0}})}{c_{i}(x,t)-c_{i}(x,t-\Delta t)}. \end{aligned}$$
(55)

Then, we build upon these functions by defining

$$\begin{aligned}&g(x,t +\frac{\Delta t}{2}):= \nonumber \\&\quad \frac{A(x)D_i(x)}{k_\mathrm{B}T}\nonumber \\&\quad \frac{c_i(x,t\!+\!\Delta t)\nabla _{\Delta x}\mu _{i,-}(x,t\!+\!\Delta t)\!+c_i(x,t)\nabla _{\Delta x}\mu _{i,+}(x,t)}{2}.\nonumber \\ \end{aligned}$$
(56)

Using Taylor expansion, one can easily show that

$$\begin{aligned}&g_1(x,t) = \frac{1}{c_{i} (x,t)} + \frac{\Delta t}{2c^2_i(x,t)} + \frac{g_2(x,t)}{k_\mathrm{B}Tc_i(x,t)} (\Delta t)^2, \nonumber \\\end{aligned}$$
(57)
$$\begin{aligned}&g_1(x,t+\Delta t) = \frac{1}{c_{i} (x,t)} - \frac{\Delta t}{2c^2_i(x,t)} + \frac{g_3(x,t)}{k_\mathrm{B}Tc_i(x,t)}(\Delta t)^2, \nonumber \\ \end{aligned}$$
(58)

where \(g_2\) and \(g_3\) are smooth functions depending on the derivatives of \(c_i\) with respect to time t.

Substituting (57) and (58) into (53) and (54), we obtain

$$\begin{aligned} \mu _{i,-}(x,t)= & {} \mu _i(x,t)+ \frac{k_\mathrm{B} T}{2c_i(x,t)}\Delta t + g_2(x,t) (\Delta t)^2, \end{aligned}$$
(59)
$$\begin{aligned} \mu _{i,+}(x,t)= & {} \mu _i(x,t) -\frac{k_\mathrm{B} T}{2c_i(x,t)}\Delta t + g_3(x,t) (\Delta t)^2. \end{aligned}$$
(60)

By replacing \(\mu _{i,+}\) and \(\mu _{i,-}\) in (56) by (59) and (60), we obtain

$$\begin{aligned} g(x,t+\frac{\Delta t}{2})= & {} \frac{A(x)D_i(x)}{2k_\mathrm{B}T}\left[ (g_4(x,t+\Delta t)+g_4(x,t)) \right. \nonumber \\&+\Delta t \left( g_5(x,t+\Delta t) - g_5(x,t)\right) \nonumber \\&\qquad (\Delta t)^2 (c_i(x,t+\Delta t)\nabla _{\Delta x} g_2(x,t+\Delta t)\nonumber \\&\qquad \left. + c_i(x,t)\nabla _{\Delta x} g_3(x,t)) \right] , \end{aligned}$$
(61)

where the smooth functions \(g_4\) and \(g_5\) are defined as

$$\begin{aligned} g_4(x,t)= & {} c_i(x,t) \nabla _{\Delta x} \mu _i(x,t), \end{aligned}$$
(62)
$$\begin{aligned} g_5(x,t)= & {} c_i(x,t) \nabla _{\Delta x} \left( \frac{k_\mathrm{B}T}{2c_i(x,t)}\right) . \end{aligned}$$
(63)

Noting the central differencing operator \(\nabla _{\Delta x}\) has the truncation error \(\displaystyle {\nabla _{\Delta x} f(x) = f^{\prime }(x) + O(\Delta x)^2}\) and from the Taylor’s expansions centered at \((x,t+\frac{\Delta t}{2})\), we have

$$\begin{aligned} g(x,t+\frac{\Delta t}{2}) = \frac{A(x)D_i(x)}{k_\mathrm{B}T} \left( c_i\frac{\partial \mu _i}{\partial x}\right) (x,t+\frac{\Delta t}{2}) \nonumber \\ + g_{6}(x,t+\frac{\Delta t}{2})(\Delta x)^2 + g_{7}(x,t+\frac{\Delta t}{2})(\Delta t)^2, \end{aligned}$$
(64)

where \(g_{6}\) and \(g_{7}\) are smooth functions of the derivatives of the unknowns \(c_i\)’s and \(\phi \) and the grid size \((\Delta x, \Delta t)\).

Therefore,

$$\begin{aligned}&\nabla _{\Delta x} g(x,t+\frac{\Delta t}{2}) = \frac{\partial }{\partial x}\left( \frac{AD_i}{k_\mathrm{B}T}c_i\frac{\partial \mu _i}{\partial x}\right) (x,t+\frac{\Delta t}{2}) \nonumber \\&\quad +\frac{\partial g_{6}}{\partial x}(x,t\!+\!\frac{\Delta t}{2}) (\Delta x)^2 \!+\! \frac{\partial g_{7}}{\partial x}(x,t\!+\!\frac{\Delta t}{2}) (\Delta t)^2 +\! g_8(x,t), \nonumber \\ \end{aligned}$$
(65)

where \(g_8(x,t)= o((\Delta x)^2)\) and \(g_8(x,t)= o((\Delta t)^2)\). Thus, the truncation error of the scheme (23) is

$$\begin{aligned}&A(x_j)\frac{c_i(x_j,t_{n+1})-c_i(x_j,t_{n})}{\Delta t} - \nabla _{\Delta x} g(x_j,t_{n+\frac{1}{2}}) \nonumber \\&\qquad = O(\Delta x)^2 +O(\Delta t)^2 \end{aligned}$$
(66)

where we have used (65) and the Nernst–Planck Eq. (5a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flavell, A., Kabre, J. & Li, X. An energy-preserving discretization for the Poisson–Nernst–Planck equations. J Comput Electron 16, 431–441 (2017). https://doi.org/10.1007/s10825-017-0969-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-0969-8

Keywords

Navigation