Skip to main content

Advertisement

Log in

QMOD: physically meaningful QSAR

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Computational methods for predicting ligand affinity where no protein structure is known generally take the form of regression analysis based on molecular features that have only a tangential relationship to a protein/ligand binding event. Such methods have utility in retrospective rationalization of activity patterns of substituents on a common scaffold, but are limited when either multiple scaffolds are present or when ligand alignment varies significantly based on structural changes. In addition, such methods generally assume independence and additivity of effect from scaffold substituents. Collectively, these non-physical modeling assumptions sharply limit the utility of widely used QSAR approaches for prospective prediction of ligand activity. The recently introduced Surflex-QMOD approach, by virtue of constructing physical models of binding sites, comes closer to a modeling approach that is congruent with protein ligand binding events. A set of congeneric CDK2 inhibitors showed that induced binding pockets can be quite congruent with the enzyme’s active site but that model predictivity within a chemical series does not necessarily depend on congruence. Muscarinic antagonists were used to show that the QMOD approach is capable of making accurate predictions in cases where highly non-additive structure activity effects exist. The QMOD method offers a means to go beyond non-causative correlations in QSAR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Langham JJ, Cleves AE, Spitzer R, Kirshner D, Jain AN (2009) J Med Chem 52:6107

    Article  CAS  Google Scholar 

  2. Alzate-Morales JH, Caballero J, Vergara Jague A, Gonzalez Nilo FD (2009) J Chem Inf Model 49:886

    Article  CAS  Google Scholar 

  3. Jain AN, Dietterich TG, Lathrop RH, Chapman D, Critchlow RE, Bauer BE, Webster TA, Lozano-Perez T (1994) J Comput Aided Mol Des 8:635

    Article  CAS  Google Scholar 

  4. Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315

    Article  CAS  Google Scholar 

  5. Jain AN, Harris NL, Park JY (1995) J Med Chem 38:1295

    Article  CAS  Google Scholar 

  6. Dietterich TG, Lathrop RH, Lozano-Perez T (1997) Artif Intell 89:31

    Article  Google Scholar 

  7. Jain AN (1996) J Comput Aided Mol Des 10:427

    Article  CAS  Google Scholar 

  8. Pham TA, Jain AN (2006) J Med Chem 49:5856

    Article  CAS  Google Scholar 

  9. Pham TA, Jain AN (2008) J Comput Aided Mol Des 22:269

    Article  CAS  Google Scholar 

  10. Johnson SR (2008) J Chem Inf Model 48:25

    Article  CAS  Google Scholar 

  11. Cramer RD (2003) J Med Chem 46:374

    Article  CAS  Google Scholar 

  12. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  13. Cramer RD, Wendt B (2007) J Comput Aided Mol Des 21:23

    Article  CAS  Google Scholar 

  14. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  15. Guner O, Clement O, Kurogi Y (2004) Curr Med Chem 11:2991

    Google Scholar 

  16. Snyder JP, Rao SN (1989) Chem Design Automation News 4:13

    Google Scholar 

  17. Vedani A, Zbinden P, Snyder JP (1993) J Recept Res 13:163

    CAS  Google Scholar 

  18. Zbinden P, Dobler M, Folkers G, Vedani A (1998) QSAR 17:122

    CAS  Google Scholar 

  19. Tanrikulu Y, Schneider G (2008) Nat Rev Drug Discov 7:667

    Article  CAS  Google Scholar 

  20. Nordvall G, Sundquist S, Johansson G, Glas G, Nilvebrant L, Hacksell U (1996) J Med Chem 39:3269

    Article  CAS  Google Scholar 

  21. Johansson G, Sundquist S, Nordvall G, Nilsson BM, Brisander M, Nilvebrant L, Hacksell U (1997) J Med Chem 40:3804

    Article  CAS  Google Scholar 

  22. Benson ML, Smith RD, Khazanov NA, Dimcheff B, Beaver J, Dresslar P, Nerothin J, Carlson HA (2008) Nucleic Acids Res 36:D674

    Article  CAS  Google Scholar 

  23. Nilvebrant L, Gillberg PG, Sparf B (1997) Pharmacol Toxicol 81:169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge NIH for partial funding of the work (Grant GM070481), Brian Goldman and Jonathan Weiss for pointing out the CDK2 data set and providing corresponding data, and Ann Cleves for comments on the manuscript. Dr. Jain has a financial interest in BioPharmics LLC, a biotechnology company whose main focus is in the development of methods for computational modeling in drug discovery. Tripos Inc. has exclusive commercial distribution rights for Surflex-Sim and Surflex-Dock, licensed from BioPharmics LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay N. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A.N. QMOD: physically meaningful QSAR. J Comput Aided Mol Des 24, 865–878 (2010). https://doi.org/10.1007/s10822-010-9379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9379-8

Keywords

Navigation