Skip to main content
Log in

Pushing the boundaries of 3D-QSAR

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Based primarily on further studies of a collection of eleven publications reporting fifteen successful 3D-QSAR relations, several phenomena are preliminarily described. The RMS error of 133 ligand binding energy predictions based on these successful 3D-QSARs is 0.75 kcal/mole, which compares favorably to the prediction accuracies of approaches that include the receptor. A similar result is obtained when topomer alignments are substituted for those published, with seemingly profound implications for the future of 3D-QSAR. The “alignment-averaged” molecular properties, log P and molar refractivity, have very little correlative power for these data sets, either alone or in combination with the 3D-QSAR field descriptors. The q metric for the number of PLS components necessarily tends to discard any unique or unconfirmed SAR information. Large drops in q 2 are thus to be expected whenever such unique information is first encountered. Predictive r 2 values from an exploratory new “series trajectory” analysis of these 3D-QSAR though highly variable do not differ much from their q 2 values, a phenomenon that seems to encourage prediction even when there are so few structures underlying a 3D-QSAR so that almost all information is unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martin YC (1998) Persp Drug Disc Design 12:3

    Article  Google Scholar 

  2. Cramer RD, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5939

    Article  Google Scholar 

  3. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  4. Kellogg GE, Semus SF, Abraham DJ (1991) J Comp-Aided Mol Des 5:545

    Article  CAS  Google Scholar 

  5. Baroni M, Costantino G, Cruciani G, Riganelli D, Valigi R, Clementi S (1993) Quant Struct-Act Relat 12:9

    Article  CAS  Google Scholar 

  6. Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315

    Article  CAS  Google Scholar 

  7. Doweyko AM, Mattes WB (1992) Biochem 31:9388

    Article  CAS  Google Scholar 

  8. Cramer RD (2003) J Med Chem 46:374

    Article  CAS  Google Scholar 

  9. Tirado-Rives J, Jorgensen W (2006) J Med Chem 49:5880

    Article  CAS  Google Scholar 

  10. Warren GL, Andrews CW, Capelli A-M, Clarke B, Lalonde B, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912

    Article  CAS  Google Scholar 

  11. Lemmen C, Lengauer T (2000) J Computer-Aided Mol Des 14:215

    Article  CAS  Google Scholar 

  12. Head RD, Smythe ML, Oprea TI, Waller CL, Green SM, Marshall GR (1996) J Am Chem Soc 118:3959

    Article  CAS  Google Scholar 

  13. Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995) J Med Chem 38:2681

    Article  CAS  Google Scholar 

  14. Gohlke H, Klebe G (2002) J Med Chem 45:4153

    Article  CAS  Google Scholar 

  15. Cramer RD, Jilek RJ, Guessregen S, Clark SJ, Wendt B, Clark RD (2004) J Med Chem 47:6777

    Article  CAS  Google Scholar 

  16. Jilek RJ, Cramer RD (2004) J Chem Inf Comp Sci 44:1221

    Article  CAS  Google Scholar 

  17. Clark M, Cramer RD (1993) Quant Struct-Act Relat 12:137

    Article  CAS  Google Scholar 

  18. Cramer RD, Jilek RJ, Andrews KM (2002) J Mol Graphics Model 20:447

    Article  CAS  Google Scholar 

  19. Andrews KM, Cramer RD (2000) J Med Chem 43:1723

    Article  CAS  Google Scholar 

  20. Cramer RD, Soltanshahi F, Jilek R, Campbell B (in press) J Comp-Aided Mol Des

  21. Pan Y, Huang N, Cho S, MacKerell AD (2003) J Chem Inf Comput Sci 43:267

    Article  CAS  Google Scholar 

  22. Bender A, Mussa HY, Glen RC (2004) J Chem Inf Comput Sci 44:1708

    Article  CAS  Google Scholar 

  23. Cramer RD (1980) J Am Chem Soc 102:1837

    Article  CAS  Google Scholar 

  24. Clark RD (2003) J Comput-Aided Mol Des 17:265

    Article  CAS  Google Scholar 

  25. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269

    Article  CAS  Google Scholar 

  26. Clark RD, Fox PC (2004) J Comput-Aided Mol Des 18:563

    Article  CAS  Google Scholar 

  27. Cramer RD, Snader KM, Willis CR, Chakrin LW, Thomas J, Sutton BM (1979) J Med Chem 22:714

    Article  CAS  Google Scholar 

  28. Topliss JG, Edwards RP (1979) J Med Chem 22:1238

    Article  CAS  Google Scholar 

  29. Unger SH, Hansch C (1973) J Med Chem 16:745

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Cramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cramer, R.D., Wendt, B. Pushing the boundaries of 3D-QSAR. J Comput Aided Mol Des 21, 23–32 (2007). https://doi.org/10.1007/s10822-006-9100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9100-0

Keywords

Navigation