Skip to main content
Log in

A theoretical study of cistrans isomerisation in H-ZSM5: probing the impact of cluster size and zeolite framework on energetics and structure

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this study the results from a series of calculations are reported that probe the influence of the QM cluster size and the extended framework treatment in ONIOM calculations. This is done by comparing the differences in the structures and energetics obtained during simulations of cistrans isomerisation of butene in H-ZSM-5 at varying level of accuracy. Seven different models have been employed; 3T, 5T and 10T DFT cluster models, and to more effectively encode the extended framework of ZSM-5; 3T:46T, 5T:46T, 10T:46T DFT:MM ONIOM models, and a 46T DFT cluster model. The results show that irrespective of the exact QM cluster size, relatively small gasphase clusters show clear limitations due to the neglect of the extended framework. In particular, the structural and electronic implications of using the different zeolite models have been rigorously assessed using the multivariate statistical method principal components analysis (PCA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davidova M, Nachtigallova D, Nachtigall P (2004) J Phys Chem B 108:13674–13682

    Article  CAS  Google Scholar 

  2. Tantanak D, Gleeson MP, Limtrakul J (2005) J Chem Inf Mod 45:1303–1312

    Article  CAS  Google Scholar 

  3. Li HY, Pu M, Liu KH, Zhang BF, Chen BH (2005) Chem Phys Lett 404:384–388

    Article  CAS  Google Scholar 

  4. Rattanasumrit A, Ruangpornvisuti V (2005) J Mol Catal A:Chem 239:68–75

    Article  CAS  Google Scholar 

  5. Boronat M, Zicovich-Wilson CM, Viruela P, Corma A (2001) J Phys Chem B 105:11169–11177

    Article  CAS  Google Scholar 

  6. Gleeson D, Limtrakul J (2007) J Mol Struct (THEOCHEM) 824:23–31

    Article  CAS  Google Scholar 

  7. Namuangruk S, Tantanak D, Limtrakul J (2006) J Mol Catal A:Chem 256:113–121

    Article  CAS  Google Scholar 

  8. Jansang B, Nanok T, Limtrakul J (2007) J Mol Catal A:Chem 264:26433–26439

    Article  Google Scholar 

  9. Solans-Monfort X, Sodupe M, Branchadell V, Sauer J, Orlo R, Ugliengo P (2005) J Phys Chem B 109:3539–3545

    Article  CAS  Google Scholar 

  10. Nieminen V, Sierka M, Murzin DY, Sauer J (2005) J Catal 231:393–404

    Article  CAS  Google Scholar 

  11. Shiota Y, Suzuki K, Yoshizawa K (2006) Organometallics 25:3118–3123

    Article  CAS  Google Scholar 

  12. Shor EAI, Shor AM, Nasluzov VA, Vayssilov GN, Rosch N (2005) J Chem Theory Comput 1:459–471

    Article  CAS  Google Scholar 

  13. Clark LA, Sierka M, Sauer J (2004) J Am Chem Soc 126:936–947

    Article  CAS  Google Scholar 

  14. Rozanska XX, Barbosa LAMM, van Santen RA (2005) J Phys Chem B 109:2203–2211

    Article  CAS  Google Scholar 

  15. Brandle M, Sauer J, Dovesi R, Harrison NM (1998) J Chem Phys 109:10379–10389

    Article  CAS  Google Scholar 

  16. Brandle M, Sauer J (1997) J Mol Catal Chemical A 119:19–33

    Article  Google Scholar 

  17. Tuma C, Sauer J (2006) Phys Chem Chem Phys 8:3955–3965

    Article  CAS  Google Scholar 

  18. Tirado-Rives J, Jorgensen WL (2008) J Chem Theory Comput 4:297–306

    Article  CAS  Google Scholar 

  19. Namuangruk S, Pantu P, Limtrakul J (2005) J Chem Phys Chem 6:1333

    CAS  Google Scholar 

  20. Namuangruk S, Khongpracha P, Pantu P, Limtrakul J (2006) J Phys Chem B 110:25950–25957

    Article  CAS  Google Scholar 

  21. Jungsuttiwong S, Limtrakul J, Truong TN (2005) J Phys Chem B 109:13342–13351

    Article  CAS  Google Scholar 

  22. Fermann JT, Moniz T, Kiowski O, McIntire TJ, Auerbach SM, Vreven T, Frisch MJ (2005) J Chem Theory Comput 1:1232–1239

    Article  CAS  Google Scholar 

  23. Gaussian 03, Revision C02, Frisch MJ, Trucks, GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz, P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe, M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople J A, Gaussian, Inc, Wallingford CT, 2004

  24. SIMCA-P 10, Umetrics, Tvistevägen 48, Box 7960, SE-907 19 Umeå, Sweden. www.umetrics.com

  25. Boronat M, Viruela P, Corma A (2001) Phys Chem Chem Phys 3:3235–3339

    Article  CAS  Google Scholar 

  26. Boronat M, Viruela P, Corma A (1998) J Phys Chem A 102:982–989

    Article  CAS  Google Scholar 

  27. Boronat M, Viruela P, Corma A (2004) J Am Chem Soc 126:3300–3309

    Article  CAS  Google Scholar 

  28. Jansang B, Nanok T, Limtrakul J (2006) J Phys Chem B 110:12626–12631

    Article  CAS  Google Scholar 

  29. Gasteiger J (2003) Chemoinformatics: a textbook Wiley VCH

Download references

Acknowledgement

The author would like to thank Prof. Jumras Limtrakul and Dr. Paul Gleeson for useful discussions during the preparation of the manuscript. The author would also like to acknowledge the support provided by The Thailand Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangkamol Gleeson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleeson, D. A theoretical study of cistrans isomerisation in H-ZSM5: probing the impact of cluster size and zeolite framework on energetics and structure. J Comput Aided Mol Des 22, 579–585 (2008). https://doi.org/10.1007/s10822-008-9207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9207-6

Keywords

Navigation