Skip to main content
Log in

Hierarchical QSAR technology based on the Simplex representation of molecular structure

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This article is about the hierarchical quantitative structure–activity relationship technology (HiT QSAR) based on the Simplex representation of molecular structure (SiRMS) and its application for different QSAR/QSP(property)R tasks. The essence of this technology is a sequential solution (with the use of the information obtained on the previous steps) to the QSAR problem by the series of enhanced models of molecular structure description [from one dimensional (1D) to four dimensional (4D)]. It is a system of permanently improved solutions. In the SiRMS approach, every molecule is represented as a system of different simplexes (tetratomic fragments with fixed composition, structure, chirality and symmetry). The level of simplex descriptors detailing increases consecutively from the 1D to 4D representation of the molecular structure. The advantages of the approach reported here are the absence of “molecular alignment” problems, consideration of different physical–chemical properties of atoms (e.g. charge, lipophilicity, etc.), the high adequacy and good interpretability of obtained models and clear ways for molecular design. The efficiency of the HiT QSAR approach is demonstrated by comparing it with the most popular modern QSAR approaches on two representative examination sets. The examples of successful application of the HiT QSAR for various QSAR/QSPR investigations on the different levels (1D–4D) of the molecular structure description are also highlighted. The reliability of developed QSAR models as predictive virtual screening tools and their ability to serve as the base of directed drug design was validated by subsequent synthetic and biological experiments, among others. The HiT QSAR is realized as a complex of computer programs known as HiT QSAR software that also includes a powerful statistical block and a number of useful utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A preliminary step is that the list of structural parameters must be well-organized on a defined principle (for example, lexicographic).

  2. This classification is offered by the authors of Cerius 2.

  3. The authors express their sincere gratitude to Prof. J. Leszczynski, Dr. L. Gorb and Dr. M. Quasim for fruitful cooperation during the development of this task.

  4. The authors express their sincere gratitude to Dr. M. Schmidtke, Prof. P. Wutzler, Dr. V. Makarov, Dr. O. Riabova, Mr. N. Kovdienko and Mr. A. Hromov for their most fruitful cooperation that made the development of this task possible.

  5. The authors express their sincere gratitude to Dr. M. Schmidtke, Prof. P. Wutzler, Dr. V. Makarov, Dr. O. Riabova and Ms. Volineckaya for their fruitful cooperation that made possible the development of this task.

  6. The authors express their sincere gratitude to Prof. G.L. Kamalov, Dr. S.A. Kotlyar and Dr. G.N. Chuprin for fruitful cooperation during the development of this task.

  7. The authors express their sincere gratitude to Dr. V.P. Lozitsky, Dr. R.N. Lozytska and Dr. A.S. Fedtchouk for their fruitful cooperation during the development of this task.

  8. The anti-influenza and antiherpetic investigations described were carried out as a result of fruitful cooperation with Dr. V.P. Lozitsky, Dr. R.N. Lozytska and Dr. A.S. Fedtchouk, Dr. T.L. Gridina, Dr. S. Basok, Dr. D. Chikhichin, Mr. V. Chelombitko and Dr. J.-J. Vanden Eynde. The authors express their sincere gratitude to all of these colleagues.

  9. In this and anti-iherpetic research 1D modeling was not carried out.

  10. We are aware that these models can approximate not only the variation in activity but also the variation in experimental errors. The high values of the R 2 test can be explained by the fact that test compounds are very similar to the training ones, that there are only few compounds in test set, by the high quality of the obtained models, by simple good luck and/or by a combination of all these factors.

Abbreviations

A/I/EVS:

Automatic/interactive/evolutionary variables selection

ACE:

Angiotensin converting enzyme

AchE:

Acetylcholinesterase

CoMFA:

Comparative molecular fields analysis QSAR approach

CoMSIA:

Comparative molecular similarity indexes analysis QSAR approach

DA:

Applicability domain

DSTP:

Dispirotripiperazine

EVA:

Eigenvalue analysis QSAR approach

GA:

Genetic algorithm

HiT QSAR:

Hierarchical QSAR technology

HQSAR:

Hologram QSAR approach

HRV:

Human rhinovirus

HSV:

Herpes simplex virus

MLR:

Multiple linear regression statistical method

PLS:

Partial least squares or projection on latent structures statistical method

Q 2 :

Cross-validation determination coefficient

QSAR/QSPR:

Quantitative structure–activity/property relationship

R 2 :

Determination coefficient for training set

R 2 test :

Determination coefficient for test set

SD:

Simplex descriptor

SI:

Selectivity index

SiRMS:

Simplex representation of the molecular structure QSAR approach

TV:

Trend-vector statistical method

References

  1. Ooms F (2000) Curr Med Chem 7(2):141

    CAS  Google Scholar 

  2. Thomas G (2008) Medicinal chemistry: an introduction, 2nd edn. Wiley

  3. Artemenko AG, Muratov EN, Kuz’min VE, Kovdienko NA, Hromov AI, Makarov VA, Riabova OB, Wutzler P, Schmidtke M (2007) J Antimicrob Chemother 60(1):68

    Google Scholar 

  4. Bailey TR, Diana GD, Kowalczyk PJ, Akullian V, Eissenstat MA, Cutcliffe D, Mallamo JP, Carabateas PM, Pevear DC (1992) J Med Chem 35(24):4628

    Article  CAS  Google Scholar 

  5. Butina D, Gola JMR (2004) J Chem Inf Comput Sci 43:837

    Google Scholar 

  6. de Jonge MR, Koymans LM, Vinkers HM, Daeyaert FF, Heeres J, Lewi PJ, Janssen PA (2005) J Med Chem 48(6):2176

    Article  CAS  Google Scholar 

  7. Jenssen H, Gutteberg TJ, Lejon T (2005) J Pept Sci 11(2):97

    Article  CAS  Google Scholar 

  8. Kovatcheva A, Golbraikh A, Oloff S, Xiao Y, Zheng W, Wolschann P, Buchbauer G, Tropsha A (2004) J Chem Inf Comput Sci 44:582

    Article  CAS  Google Scholar 

  9. Kubinyi H (1990) J Cancer Res Clin Oncol 116:529

    Article  CAS  Google Scholar 

  10. Kuz’min VE, Artemenko AG, Lozitska RN, Fedtchouk AS, Lozitsky VP, Muratov EN, Mescheriakov AK (2005) SAR QSAR Environ Res 16(3):219

    Article  CAS  Google Scholar 

  11. Kuz’min VE, Artemenko AG, Muratov EN, Volineckaya IL, Makarov VA, Riabova OB, Wutzler P, Schmidtke M (2007) J Med Chem 50:4205

    Article  CAS  Google Scholar 

  12. Muratov EN, Artemenko AG, Kuz’min VE, Lozitsky VP, Fedchuk AS, Lozitska RN, Boschenko YA, Gridina TL (2005) Antiviral Res 65(3):A62

    Google Scholar 

  13. Verma RP, Hansch C (2006) Curr Med Chem 13(4):423

    Article  CAS  Google Scholar 

  14. Zhang S, Golbraikh A, Tropsha A (2006) J Med Chem 49:2713

    Article  CAS  Google Scholar 

  15. Selassie CD (2003) In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery, 6th edn, vol 1. Wiley, New York

  16. Cramer RD, Patterson DI, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  17. Doweyko AM (1988) J Math Chem 31:1396

    CAS  Google Scholar 

  18. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  19. Kuz’min VE, Artemenko AG, Kovdienko NA, Tetko IV, Livingstone DJ (2000) J Mol Model 6:517

    Article  CAS  Google Scholar 

  20. Seel M, Turner DB, Wilett P (1999) QSAR 18:245

    CAS  Google Scholar 

  21. Pavan M, Consonni V, Gramatica P, Todeschini R (2006) In: Partial order in environmental sciences and chemistry. Springer, Berlin, pp 181–217

  22. Baurin N, Mozziconacci JC, Arnoult E, Chavatte P, Marot C, Morin-Allory L (2004) J Chem Inf Model 44(1):276

    Article  CAS  Google Scholar 

  23. Vedani A, Dobler M (2000) Prog Drug Res 55:107

    Google Scholar 

  24. Kuz’min VE, Artemenko AG, Polischuk PG, Muratov EN, Hromov AI, Liahovskiy AV, Andronati SA, Makan SY (2005) J Mol Model 11(6):457

    Article  CAS  Google Scholar 

  25. Kuz’min VE, Artemenko AG, Muratov EN, Lozitsky VP, Fedchuk AS, Lozitska RN, Boschenko YA, Gridina TL (2005) Antiviral Res 65(3):A70

    Google Scholar 

  26. Artemenko A, Kuz’min V, Muratov E, Fedchuk A, Lozitsky V, Gridina T, Lozytska R, Basok S, Chikhichin D (2007) Antiviral Res 74:A76

    Article  Google Scholar 

  27. Artemenko A, Muratov E, Kuz’min V, Fedtchuk A, Mykhaylovska N, Lesyk R, Zimenkovsky B (2006) Clin Microbiol Infect 12(4):1557

    Google Scholar 

  28. Artemenko A, Muratov E, Kuz’min V, Koroleva L, Silnikov V, Lozitsky V, Fedchuk A (2006) Antiviral Res 70:A43

    Google Scholar 

  29. Artemenko AG, Kuz’min VE, Muratov EN, Lozitsky VP, Fedchuk AS, Lozitska RN, Boschenko YA, Gridina TL (2005) Antiviral Res 65(3):A77

    Google Scholar 

  30. Kuz’min VE, Artemenko AG, Lozitsky VP, Muratov EN, Fedtchouk AS, Dyachenko NS, Nosach LN, Gridina TL, Shitikova LI, Mudrik LM, Mescheriakov AK, Chelombitko VA, Zheltvay AI, Vanden Eynde J-J (2002) Acta Biochim Pol 49:157

    CAS  Google Scholar 

  31. Kuz’min VE, Artemenko AG, Muratov EN, Volineckaya IL, Makarov VA, Riabova OB, Wutzler P, Schmidtke M (2007) Antiviral Res 74:A49

    Article  Google Scholar 

  32. Muratov E, Artemenko A, Kuz’min V, Konup I, Konup L, Kotlyar S, Kamalov G, Fedtchuk A, Mykhaylovska N (2006) Clin Microbiol Infect 12(4):1558

    Google Scholar 

  33. Muratov EN, Kuz’min VE, Artemenko AG, Makarov VA, Riabova OB, Wutzler P, Schmidtke M, Lozitsky V, Fedchuk A (2006) Antiviral Res 70:A77

    Google Scholar 

  34. QSAR; Expert; Group (2004) The report from the expert group on (quantitative) structure–activity relationships [(Q)SARs] on the principles for the validation of (Q)SARs.; 49; Organisation for Economic Co-operation and Development, Paris

  35. Kuz’min VE (1995) Zh Strucur Khim 36:873

    CAS  Google Scholar 

  36. Jolly WL, Perry WB (1973) J Am Chem Soc 95:5442

    Article  CAS  Google Scholar 

  37. Wang R, Fu Y, Lai L (1997) J Chem Inf Comput Sci 37:615

    Article  CAS  Google Scholar 

  38. Ioffe BV (1983) Chemistry refractometric methods, 3rd edn. Himiya, Leningrad

    Google Scholar 

  39. Burkert U, Allinger N (1982) Molecular mechanics. ACS Publication, Washington D.C.

    Google Scholar 

  40. Marple SL Jr (1987) Digital spectral analysis with applications. Prentice-Hall, New York

  41. Östergard PRJ (2002) Discrete Appl Math 120:195

    Article  Google Scholar 

  42. Muratov EN (2004) Quantitative evaluation of the structural factors influence on the properties of nitrogen-, oxygen- and sulfur-containing macroheterocycles. A.V. Bogatsky Physical-Chemical Institute, Odessa

    Google Scholar 

  43. Bodor N, Buchwald P (2000) Med Res Rev 20(1):58

    Article  CAS  Google Scholar 

  44. Cronin MTD, Schultz TW (2003) J Mol Struct (Theochem) 622:39

    Article  CAS  Google Scholar 

  45. Kubinyi H (1996) J Chemometr 10:119

    Article  CAS  Google Scholar 

  46. Lindgren F, Geladi P, Rannar S, Wold S (1994) J Chemometr 8:349

    Article  Google Scholar 

  47. Rannar S, Lindgren F, Geladi P, Wold S (1994) J Chemometr 8:111

    Article  Google Scholar 

  48. Rogers D, Hopfinger AJ (1994) J Chem Inf Comput Sci 34(4):854

    Article  CAS  Google Scholar 

  49. Carhart RE, Smith DH, Venkataraghavan R (1985) J Chem Inf Comput Sci 25:64

    CAS  Google Scholar 

  50. Vitiuk NV, Kuz’min VE (1994) Zh Anal Khim 49:165

    Google Scholar 

  51. Wold S, Antti H, Lindgren F, Ohman J (1998) Chemometr Intell Lab Syst 44:175

    Article  CAS  Google Scholar 

  52. Trygg J, Wold S (2002) J Chemometr 16:119

    Article  CAS  Google Scholar 

  53. Neter J, Kutner MH, Wasseman W, Nachtsheim C (1996) Applied linear statistical models. McGraw-Hill, New York

    Google Scholar 

  54. Meloun M, Militku J, Hill M, Brereton MG (2002) Analyst 127:433

    Article  CAS  Google Scholar 

  55. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) Altern Lab Anim 33:445

    CAS  Google Scholar 

  56. Sutherland JJ, O’Brien LA, Weaver DF (2004) J Med Chem 47:5541

    Article  CAS  Google Scholar 

  57. Heritage TV, Ferguson AM, Turner DB, Willett P (1998) Perspect Drug Discovery Des 11:381

    Article  Google Scholar 

  58. Free SM, Wilson JW (1964) J Med Chem 7:395

    Article  CAS  Google Scholar 

  59. Kuz’min VE, Lozitsky VP, Kamalov GL, Lozitskaya RN, Zheltvay AI, Fedtchouk AS, Kryzhanovsky DN (2000) Acta Biochim Pol 47:867

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant of the President of Ukraine (President of Ukraine grant for young investigators GP/F11/0115), the Science & Technology Center in Ukraine (STCU project 3147) and INTAS foundation (INTAS Grant 97-31528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Muratov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz’min, V.E., Artemenko, A.G. & Muratov, E.N. Hierarchical QSAR technology based on the Simplex representation of molecular structure. J Comput Aided Mol Des 22, 403–421 (2008). https://doi.org/10.1007/s10822-008-9179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9179-6

Keywords

Navigation