Skip to main content

QSAR—An Important In-Silico Tool in Drug Design and Discovery

  • Conference paper
  • First Online:
Advances in Computational Modeling and Simulation

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

QSAR (Quantitative structure–activity relationship) study is important thirst area in drug design and discovery via computational studies of chemistry. The hypothesis, alterations in structure of molecules reflect proportional variations in the pharmacological or biological activity, is the centre for focus of QSAR analysis. Currently one dimensional to six dimensional QSAR methods is available, and they are used in lead optimization, classification, and prediction of pharmacological or biological activity, pharmacokinetic properties, and toxicity of chemical compounds. The accomplishment of various models of QSAR depends on many factors or criteria’s such as input data accuracy, selection of descriptors, feature selection, model development, and validation as reported in OECD principle for QSAR. Validation is an important step in QSAR, and it is used to establish reliability and significance of a procedure of specific purpose. However, to be useful, QSAR models should be revealing and easily understandable in explaining the essential molecular features that plays a major role in the alteration of biological activity. Thus, the goal of the current chapter is to briefly discuss the principle, prerequisites to set up correct models, methods, validation, limitations of model applications, and the significance of QSAR in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P (2021) Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Diversity 25:1315–1360

    Article  Google Scholar 

  2. Khan MTH, Sylte I (2007) Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules. Curr Drug Discov Technol 4:141–149

    Article  Google Scholar 

  3. Kubinyi H (2002) From narcosis to hyperspace: The history of QSAR. Quant Struct-act Relatsh 21:348–356

    Article  Google Scholar 

  4. Prachayasittikul V, Worachartcheewan A, Shoombuatong W, Songtawee N, Simeon S, Prachayasittikul V, Nantasenamat C (2015) Computer-aided drug design of bioactive natural products. Curr Top Med Chem 15:1780–1800

    Article  Google Scholar 

  5. Katritzky AR, Kuanar M, Slavov S, Hall CD, Karelson M, Kahn I, Dobchev DA (2010) Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem Rev 110:5714–5789

    Article  Google Scholar 

  6. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834

    Article  Google Scholar 

  7. Shoombuatong W, Prathipati P, Owasirikul W, Worachartcheewan A, Simeon S, Anuwongcharoen N, Wikberg JES, Nantasenamat C (2017) Towards the revival of interpretable QSAR models. Challenges and advances in computational chemistry and physics. Springer International Publishing, Cham, pp 3–55

    Google Scholar 

  8. Huang HJ, Lee KJ, Yu HW, Chen HY, Tsai FJ, Chen CY (2010) A novel strategy for designing the selective PPAR agonist by the “sum of activity” model. J Biomol Struct Dyn 28(2):187–200

    Article  Google Scholar 

  9. Sundriyal S, Bharatam PV (2009) ‘Sum of activities’ as dependent parameter: a new CoMFA-based approach for the design of pan PPAR agonists. Eur J Med Chem 44(1):42–53

    Article  Google Scholar 

  10. Cros AFA (1863) Action de lalcohol amylique sur lorganisme. PhD thesis, University of Strasbourg

    Google Scholar 

  11. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  Google Scholar 

  12. Free SM Jr, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399

    Article  Google Scholar 

  13. Kubinyi H (1988) Free Wilson analysis. Theory, applications and its relationship to Hansch analysis. Quant Struct-act Relatsh 7:121–133

    Article  Google Scholar 

  14. Wei DB, Zhang AQ, Han SK, Wang LS (2001) Joint QSAR analysis using the Free-Wilson approach and quantum chemical parameters. SAR QSAR Environ Res 12:471–479

    Article  Google Scholar 

  15. Verma RP, Hansch C (2009) Camptothecins: a SAR/QSAR study. Chem Rev 109:213–235

    Article  Google Scholar 

  16. Gao H, Katzenellenbogen JA, Garg R, Hansch C (1999) Comparative QSAR analysis of estrogen receptor ligands. Chem Rev 99:723–744

    Article  Google Scholar 

  17. Selassie CD, Garg R, Kapur S, Kurup A, Verma RP, Mekapati SB, Hansch C (2002) Comparative QSAR and the radical toxicity of various functional groups. Chem Rev 102:2585–2605

    Article  Google Scholar 

  18. Kurup A, Garg R, Carini DJ, Hansch C (2001) Comparative QSAR: angiotensin II antagonists. Chem Rev 101:2727–2750

    Article  Google Scholar 

  19. Hansch C, Gao H (1997) Comparative QSAR: radical reactions of benzene derivatives in chemistry and biology. Chem Rev 97:2995–3060

    Article  Google Scholar 

  20. Hansch C, Hoekman D, Gao H (1996) Comparative QSAR: toward a deeper understanding of chemicobiological interactions. Chem Rev 96:1045–1076

    Article  Google Scholar 

  21. Hadjipavlou-Litina D, Garg R, Hansch C (2004) Comparative quantitative structure—activity relationship studies (QSAR) on non-benzodiazepine compounds binding to benzodiazepine receptor (BzR). Chem Rev 104:3751–3794

    Article  Google Scholar 

  22. Garg R, Kurup A, Mekapati SB, Hansch C (2003) Cyclooxygenase (COX) inhibitors: a comparative QSAR study. Chem Rev 103:703–732

    Article  Google Scholar 

  23. Fujita T, Winkler DA (2016) Understanding the roles of the “two QSARs.” J Chem Inf Model 56:269–274

    Article  Google Scholar 

  24. Cortés-Ciriano I, Ain QU, Subramanian V et al (2015) Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects. Medchemcomm 6:24–50

    Article  Google Scholar 

  25. Qiu T, Qiu J, Feng J, Wu D, Yang Y, Tang K, Cao Z, Zhu R (2017) The recent progress in proteochemometric modelling: focusing on target descriptors, cross-term descriptors and application scope. Brief Bioinform 18:125–136

    Article  Google Scholar 

  26. Kubinyi H (2006) Success stories of computer-aided design. Computer applications in pharmaceutical research and development. Wiley, Hoboken, NJ, USA, pp 377–424

    Chapter  Google Scholar 

  27. Cronin MTD, Livingstone DJ (2004) Predicting Chemical Toxicity and Fate. CRC Press LLC, Boca Raton, FL, London

    Book  Google Scholar 

  28. Albuquerque MG, Hopfinger AJ, Barreiro EJ, Alencastro RB (1998) Four-dimensional quantitative structure—activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists. J Chem Inf Comput Sci 38:925–938

    Article  Google Scholar 

  29. Santos-Filho OA, Hopfinger AJ (2001) A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors. J Comput Aided Mol Des 15:1–12

    Article  Google Scholar 

  30. Ravi M, Hopfinger AJ, Hormann RE, Dinan L (2001) 4D-QSAR analysis of a set of ecdysteroids and a comparison to CoMFA modeling. J Chem Inf Comput Sci 41:1587–1604

    Article  Google Scholar 

  31. Krasowski MD, Hong X, Hopfinger AJ, Harrison NL (2002) 4D-QSAR analysis of a set of propofol analogues: mapping binding sites for an anesthetic phenol on the GABAA receptor. J Med Chem 45:3210–3221

    Article  Google Scholar 

  32. Hong X, Hopfinger AJ (2003) 3D-pharmacophores of flavonoid binding at the benzodiazepine GABAA receptor site using 4D-QSAR analysis. ChemInform 34

    Google Scholar 

  33. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  Google Scholar 

  34. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  Google Scholar 

  35. Tong W, Hong H, Xie Q, Shi L, Fang H, Perkins R (2005) Assessing QSAR limitations-a regulatory perspective. Curr Comput Aided Drug Des 1:195–205

    Article  Google Scholar 

  36. OECD Principles for the Validation of (Q)SARs (2004). https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf. Accessed 30 Jul 2021

  37. Waterbeemd H, van de Carter RE, Grassy G, Kubinyi H, Martin YC, Tute MS, Willett P (1998) Glossary of terms used in computational drug design (IUPAC recommendations 1997). In: Annual reports in medicinal chemistry. Elsevier, pp 397–409

    Google Scholar 

  38. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT (2007) Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem 15:1749–1770

    Article  Google Scholar 

  39. Papa E, Dearden JC, Gramatica P (2007) Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere 67:351–358

    Article  Google Scholar 

  40. Mutihac L, Mutihac R (2008) Mining in chemometrics. Anal Chim Acta 612:1–18

    Article  Google Scholar 

  41. Ivanenkov YA, Savchuk NP, Ekins S, Balakin KV (2009) Computational mapping tools for drug discovery. Drug Discov Today 14:767–775

    Article  Google Scholar 

  42. Zuvela P, David J, Yang X, Huang D, Wong MW (2019) Non-linear quantitative structure–activity relationships modelling, mechanistic study and in-silico design of flavonoids as potent antioxidants. Int J Mol Sci 20(9):2328

    Google Scholar 

  43. Zhou W, Wu S, Dai Z, Chen Y, Xiang Y, Chen J, Sun C, Zhou Q, Yuan Z (2015) Nonlinear QSAR models with high-dimensional descriptor selection and SVR improve toxicity prediction and evaluation of phenols on Photobacterium phosphoreum. Chemometr Intell Lab Syst 145:30–38

    Article  Google Scholar 

  44. Ramandi M, Riahi S, Rahimi H, Mohammadi-Khanaposhtani M (2020) Molecular docking, linear and nonlinear QSAR studies on factor Xa inhibitors. Struct Chem 31:2023–2040

    Article  Google Scholar 

  45. Breiman L, Friedman J, Olshen RA, Stone CJ (1984) Classification and regression trees Chapman & Hall

    Google Scholar 

  46. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  MATH  Google Scholar 

  47. He L, Jurs PC (2005) Assessing the reliability of a QSAR model’s predictions. J Mol Graph Model 23:503–523

    Article  Google Scholar 

  48. Roy PP, Leonard JT, Roy K (2008) Exploring the impact of size of training sets for the development of predictive QSAR models. Chemometr Intell Lab Syst 90:31–42

    Article  Google Scholar 

  49. Von Der Ohe PC, Kühne R, Ebert RU, Schüürmann G (2007) Comment on “Discriminating toxicant classes by mode of action: 3. Substructure indicators” (M. Nendza and M. Müller, SAR QSAR Environ. Res. 18 155 (2007)). SAR QSAR in Environ Res 18:621–624

    Article  Google Scholar 

  50. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  51. Ravichandran (2016) Exploring the structural insights of indole-7-carboxamides as anti-HIV agents. FARMACIA 64:745–756

    Google Scholar 

  52. Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK (2011) Validation of QSAR models-strategies and importance. Int J Drug Des Discov 3:511–519

    Google Scholar 

  53. Chirico N, Papa E, Gramatica P (nd) Externally predictive QSAR models: thresholds of acceptance by various external validation criteria and critical inspection of scatter plots. http://www.cadaster.eu/sites/cadaster.eu/files/workshop/1_19.pdf. Accessed 30 Jul 2021

  54. Hawkins DM, Basak SC, Mills D (2003) Assessing model fit by cross-validation. J Chem Inf Comput Sci 43:579–586

    Article  Google Scholar 

  55. Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44:1–12

    Article  Google Scholar 

  56. Norinder U (1996) Single and domain mode variable selection in 3D QSAR applications. J Chemom 10:95–105

    Article  Google Scholar 

  57. Kubinyi H (2007) A general view on similarity and QSAR studies. Computer-Assisted lead finding and optimization. Verlag Helvetica Chimica Acta, Zürich, pp 7–28

    Google Scholar 

  58. Kubinyi H, Hamprecht FA, Mietzner T (1998) Three-dimensional quantitative similarity—activity relationships (3d qsiar) from seal similarity matrices. J Med Chem 41:2553–2564

    Article  Google Scholar 

  59. Dearden JC, Cronin MTD, Kaiser KLE (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266

    Article  Google Scholar 

  60. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2009) A practical overview of quantitative structure-activity relationship. EXCLI J 8:74–88

    MATH  Google Scholar 

  61. Verma RP, Hansch C (2005) An approach toward the problem of outliers in QSAR. Bioorg Med Chem 13:4597–4621

    Article  Google Scholar 

  62. Kim KH (2007) Outliers in SAR and QSAR: 2. Is a flexible binding site a possible source of outliers? J Comput Aided Mol Des 21:421–435

    Article  Google Scholar 

  63. Sahigara F, Ballabio D, Todeschini R, Consonni V (2013) Defining a novel k-nearest neighbours’ approach to assess the applicability domain of a QSAR model for reliable predictions. J Cheminform 5:27

    Article  Google Scholar 

  64. Kar S, Roy K, Leszczynski J (2018) Applicability domain: a step toward confident predictions and decidability for QSAR modeling. Methods Mol Biol 1800:141–169

    Article  Google Scholar 

  65. Guha R (2021) CDK Descriptor Calculator GUI (version 1.4. 6). http://www.rguha.net/code/java/ cdkdesc.html. Accessed 30 Jul 2021

  66. rcdk: Interface to the CDK Libraries. https://cran.r-project.org/web/packages/rcdk/index.html. Accessed 30 Jul 2021

  67. Yap C (2021) PaDEL-Descriptor. http://www.yapcwsoft.com/dd/padeldescriptor. Accessed 30 Jul 2021

  68. Yap CW (2011) PaDEL-descriptor: an open-source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  Google Scholar 

  69. Xiao N, Cao D, Xu QR (2021) Toolkit for compound-protein interaction in drug discovery. http://bioconductor.org/packages/release/bioc/html/Rcpi.html. Accessed 30 Jul 2021

  70. Moplex Ltd (2021) Sykora V Chemical Descriptors Library. https://sourceforge.net/projects/cdelib/. Accessed 30 Jul 2021

  71. Cao D (2017) ChemoPy descriptor calculator. http://www.scbdd.com/chemopydesc/index/. Accessed 30 Jul 2021

  72. O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G (2017) Open Babel: the open source chemistry toolbox. http://openbabel.org/. Accessed 30 Jul 2021

  73. Moriwaki H, Tian Y, Kawashita N (2018) Mordred: a molecular descriptor calculator. J Cheminform 10(4). https://doi.org/10.1186/s13321-018-0258-y

  74. RDKit (2021) Open-source cheminformatics. http://www.rdkit.org. Accessed 30 Jul 2021

  75. Nantasenamat C, Worachartcheewan A, Jamsak S, Preeyanon L, Shoombuatong W, Simeon S, Mandi P, Isarankura-Na-Ayudhya C, Prachayasittikul V (2015) AutoWeka: toward an automated data mining software for QSAR and QSPR studies. Methods Mol Biol 1260:119–147

    Article  Google Scholar 

  76. Staalring JC, Carlsson LA, Almeida P, Boyer S (2011) AZOrange-High performance open-source machine learning for QSAR modeling in a graphical programming environment. J Cheminform 3:1–10

    Article  Google Scholar 

  77. Kuhn T, Willighagen EL, Zielesny A, Steinbeck C (2010) CDK-Taverna: an open workflow environment for cheminformatics. BMC Bioinform 11:159

    Article  Google Scholar 

  78. Miller BT, Singh RP, Klauda JB, Hodoscek M, Brooks BR, Woodcock HL 3rd (2008) CHARMMing: a new, flexible web portal for CHARMM. J Chem Inf Model 48:1920–1929

    Article  Google Scholar 

  79. Walker T, Grulke CM, Pozefsky D, Tropsha A (2010) Chembench: a cheminformatics workbench. Bioinformatics 26:3000–3001

    Article  Google Scholar 

  80. Backman TWH, Cao Y, Girke T (2011) ChemMine tools: an online service for analyzing and clustering small molecules. Nucl Acids Res 39:W486–W491

    Article  Google Scholar 

  81. Benfenati E, Toropov AA, Toropova AP, Manganaro A, Gonella Diaza R (2011) Coral software: QSAR for anticancer agents: Coral Software: QSAR for anticancer agents. Chem Biol Drug Des 77:471–476

    Article  Google Scholar 

  82. DTAI Research Group (2017) DMax chemistry assistant. https://dtai.cs.kuleuven.be/software/dmax/. Accessed 30 Jul 2021

  83. Sushko I, Novotarskyi S, Körner R et al (2011) Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comput Aided Mol Des 25:533–554

    Article  Google Scholar 

  84. Dimitrov SD, Diderich R, Sobanski T, Pavlov TS, Chankov GV, Chapkanov AS, Mekenyan OG (2016) QSAR Toolbox–workflow and major functionalities. SAR QSAR Environ Res 27:203–219

    Article  Google Scholar 

  85. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocycl Compd (NY) 50:444–457

    Article  Google Scholar 

  86. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132

    Article  Google Scholar 

  87. Cox R, Green DVS, Luscombe CN, Malcolm N, Pickett SD (2013) QSAR workbench: automating QSAR modeling to drive compound design. J Comput Aided Mol Des 27:321–336

    Article  Google Scholar 

  88. Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B (2008) An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res 19:495–524

    Article  Google Scholar 

  89. Martins JPA, Barbosa EG, Pasqualoto KFM, Ferreira MMC (2009) LQTA-QSAR: a new 4D-QSAR methodology. J Chem Inf Model 49:1428–1436

    Article  Google Scholar 

  90. Halder AK, Dias Soeiro Cordeiro MN (2021) QSAR-Co-X: an open-source toolkit for multitarget QSAR modelling. J Cheminform 13(29). https://doi.org/10.1186/s13321-021-00508-0

  91. Drug Theoretics and Cheminformatics (DTC) laboratory software tools. https://dtclab.webs.com/software-tools. Accessed 30 Jul 2021

  92. Soufan O, Ba-alawi W, Magana-Mora A (2021) DPubChem: a web tool for QSAR modeling and high-throughput virtual screening. Sci Rep. https://www.nature.com/articles/s41598–018–27495-x. Accessed 30 Jul 2021

    Google Scholar 

  93. Enciso M, Meftahi N, Walker ML, Smith BJ (2016) BioPPSy: an open-source platform for QSAR/QSPR analysis. PLoS ONE 11:e0166298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravichandran Veerasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Veerasamy, R. (2022). QSAR—An Important In-Silico Tool in Drug Design and Discovery. In: Srinivas, R., Kumar, R., Dutta, M. (eds) Advances in Computational Modeling and Simulation. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-7857-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7857-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7856-1

  • Online ISBN: 978-981-16-7857-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics