Skip to main content

Advertisement

Log in

A novel workflow for the inverse QSPR problem using multiobjective optimization

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A workflow for the inverse quantitative structure–property relationship (QSPR) problem is reported in this paper for the de novo design of novel chemical entities (NCE) in silico through the application of existing QSPR models to calculate multiple objectives, including prediction confidence measures, to be optimized during the de novo design process. Two physical property datasets are applied as case studies of the inverse QSPR workflow (IQW): mean molecular polarizability and aqueous solubility. The case studies demonstrate the optimization of molecular structures to within a property range of interest; the optimized structures are then validated against QSPR models that are generated from sets of alternative descriptors to those used in the IQW. The paper concludes with a discussion of the results from the case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Federsel H-J (2003) Curr Opin Drug Discov Dev 6:838–847

    CAS  Google Scholar 

  2. McKay B, Hoogenraad M, Damen EWP, Smith AA (2003) Curr Opin Drug Discov Dev 6:966–977

    CAS  Google Scholar 

  3. Venkatasubramanian V, Chan K, Caruthers JM (1995) J Chem Inf Comput Sci 35:188–195

    Article  CAS  Google Scholar 

  4. Skvortsova MI, Baskin II, Slovokhotova OL, Palyulin VA, Zefirov NS (1993) J Chem Inf Comput Sci 33:630–634

    Article  CAS  Google Scholar 

  5. Kamphausen S, Höltge N, Wirsching F, Morys-Wortmann C, Riester D, Goetz R, Thürk M, Schwienhorst A (2002) Comput-Aid Mol Design 16:551–567

    Article  CAS  Google Scholar 

  6. de Julián-Ortiz JV (2001) Combinator Chem High Throughput Screen 4:295–310

    Google Scholar 

  7. Schneider G, Fechner U (2005) Nat Rev Drug Discov 4:649–663

    Article  CAS  Google Scholar 

  8. Brown N, McKay B, Gilardoni F, Gasteiger J (2004) J Chem Inf Comput Sci 44:1079–1087

    Article  CAS  Google Scholar 

  9. Brown N, McKay B, Gasteiger J (2004) J Comput-Aid Mol Des 18:761–771

    Article  CAS  Google Scholar 

  10. Johnson MA, Maggiora GM (1990). Concepts and applications of molecular similarity. Wiley, New York, NY

    Google Scholar 

  11. Miller KJ (1990) J Am Chem Soc 112:8533–8542

    Article  CAS  Google Scholar 

  12. Huuskonen J, Salo M, Taskinen J (1998) J Chem Inf Comput Sci 38:450–456

    Article  CAS  Google Scholar 

  13. Brown N, McKay B, Gasteiger J (2005) QSAR Comb Sci 24:480–484

    Article  CAS  Google Scholar 

  14. Geladi P, Kowalski BR (1986) Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  15. The SIMCA-P software is available from Umetrics, A.B. at http://www.umetrics.com/

  16. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (xxxx) Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS)

  17. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P (2003) Environ Health Perspect 111:1361–1375

    Article  CAS  Google Scholar 

  18. Fonseca CM, Fleming PJ (1993) In: Forrest S (ed) Genetic algorithms: proceedings of the fifth international conference. San Mateo, CA, Morgan Kaufmann, pp 416–423

  19. Handschuh S, Wagener M, Gasteiger J (1998) J Chem Inf Comput Sci 38:220–232

    Article  CAS  Google Scholar 

  20. Agrafiotis DK (2001) IBM J Res Dev 45:545–566

    Article  CAS  Google Scholar 

  21. Wright T, Gillet VJ, Green DVS, Pickett SD (2003) J Chem Inf Comput Sci 43:381–390

    Article  CAS  Google Scholar 

  22. Cottrell SJ, Gillett VJ, Taylor R, Wilton DJ (2004) J Comput-Aided Mol De 18:665–682

    Article  CAS  Google Scholar 

  23. The Dragon software is available from Talete, Srl. at http://www.talete.mi.it/

  24. Sutherland JJ, O’Brien LA, Weaver DF (2004) J Med Chem 47:5541–5554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by a Marie Curie Fellowship of the European Community programme ‘Exploring leads in combinatorial catalysis for novel clean pharmaceutical/fine chemical processes’ under contract number HPMI-CT-2001-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, N., McKay, B. & Gasteiger, J. A novel workflow for the inverse QSPR problem using multiobjective optimization. J Comput Aided Mol Des 20, 333–341 (2006). https://doi.org/10.1007/s10822-006-9063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9063-1

Keywords

Navigation