Skip to main content
Log in

Protonation-induced stereoisomerism in nicotine: Conformational studies using classical (AMBER) and ab initio (Car–Parrinello) molecular dynamics

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A variety of biologically active small molecules contain prochiral tertiary amines, which become chiral centers upon protonation. S-nicotine, the prototypical nicotinic acetylcholine receptor agonist, produces two diastereomers on protonation. Results, using both classical (AMBER) and ab initio (Car–Parrinello) molecular dynamical studies, illustrate the significant differences in conformational space explored by each diastereomer. As is expected, this phenomenon has an appreciable effect on nicotine’s energy hypersurface and leads to differentiation in molecular shape and divergent sampling. Thus, protonation induced isomerism can produce dynamic effects that may influence the behavior of a molecule in its interaction with a target protein. We also examine differences in the conformational dynamics for each diastereomer as quantified by both molecular dynamics methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aiMD:

ab initio molecular dynamics

ACh:

acetylcholine

AChBP:

acetylcholine binding protein

DFT:

density functional theory

LGIC:

ligand-gated ion channels

MM:

molecular mechanics

nAChR:

nicotinic acetylcholine receptors

QM:

quantum mechanics

QSAR:

quantitative structure activity relationships

SE:

semi-empirical.

References

  1. M. Bencherif J.D. Schmitt (2002) ArticleTitleCurr. Drug Target CNS. Neurol. Disord., 1 349

    Google Scholar 

  2. R.B. Barlow J.A.K. Howard O. Johnson (1986) ArticleTitleActa Crystallogr. Section C: Cryst. Struct. Commun. C42 853 Occurrence Handle10.1107/S0108270186094301 Occurrence Handle1:CAS:528:DyaL28XltVKit7s%3D

    Article  CAS  Google Scholar 

  3. C.H. Koo H.S. Kim (1965) Taehan Hwahakhoe Chi 9 134 Occurrence Handle1:CAS:528:DyaF28XktlCmu7k%3D

    CAS  Google Scholar 

  4. K.R. Chynoweth B. Ternai L.S. Simeral G.E. Maciel (1973) Mol. Pharmacol. 9 144 Occurrence Handle1:CAS:528:DyaE3sXhtlGmsLg%3D Occurrence Handle4711697

    CAS  PubMed  Google Scholar 

  5. J.F. Whidby J.I. Seeman (1976) J. Org. Chem. 41 1585 Occurrence Handle10.1021/jo00871a022 Occurrence Handle1:CAS:528:DyaE28Xhsl2ms7k%3D Occurrence Handle1263010

    Article  CAS  PubMed  Google Scholar 

  6. D.E. Elmore D.A. Dougherty (2000) J. Org. Chem. 65 742 Occurrence Handle10.1021/jo991383q Occurrence Handle1:CAS:528:DC%2BD3cXksFymtA%3D%3D Occurrence Handle10814006

    Article  CAS  PubMed  Google Scholar 

  7. H. Gohlke S. Schwarz D. Gundisch M.C. Tilotta A. Weber T. Wegge G. Seitz (2003) J. Med. Chem. 46 2031 Occurrence Handle10.1021/jm020859m Occurrence Handle1:CAS:528:DC%2BD3sXjt1amtbg%3D Occurrence Handle12747776

    Article  CAS  PubMed  Google Scholar 

  8. S.J. Teague (2003) Nat. Rev. Drug. Discov. 2 527 Occurrence Handle10.1038/nrd1129 Occurrence Handle1:CAS:528:DC%2BD3sXltVaktrs%3D Occurrence Handle12838268

    Article  CAS  PubMed  Google Scholar 

  9. C. Mattos D. Ringe (1993) Multiple Binding Modes H. Kubinyi (Eds) 3D QSAR in Drug Design: Theory Methods and Applications Kluwer Academic Publishers Dordrecht 226–254

    Google Scholar 

  10. N. Zacharias D.A. Dougherty (2002) Trends Pharmacol. Sci. 23 281 Occurrence Handle10.1016/S0165-6147(02)02027-8 Occurrence Handle1:CAS:528:DC%2BD38XkslGgtbw%3D Occurrence Handle12084634

    Article  CAS  PubMed  Google Scholar 

  11. J.P.D.D.A. Gallivan (2000) J. Am. Chem. Soc. 122 870 Occurrence Handle10.1021/ja991755c Occurrence Handle1:CAS:528:DC%2BD3cXltVyitg%3D%3D

    Article  CAS  Google Scholar 

  12. J.D. Schmitt C.G. Sharples W.S. Caldwell (1999) J. Med. Chem. 42 3066 Occurrence Handle10.1021/jm990093z Occurrence Handle1:CAS:528:DyaK1MXksFGhsrg%3D Occurrence Handle10447950

    Article  CAS  PubMed  Google Scholar 

  13. D.A. Dougherty (1996) Science 271 163 Occurrence Handle1:CAS:528:DyaK28XktFOlsw%3D%3D Occurrence Handle8539615

    CAS  PubMed  Google Scholar 

  14. J.C. Ma D.A. Dougherty (1997) Chem. Rev. 97 1303 Occurrence Handle10.1021/cr9603744 Occurrence Handle1:CAS:528:DyaK2sXksV2kurk%3D Occurrence Handle11851453

    Article  CAS  PubMed  Google Scholar 

  15. N. Zacharias D.A. Dougherty (2002) Trends Pharmacol. Sci. 23 281 Occurrence Handle10.1016/S0165-6147(02)02027-8 Occurrence Handle1:CAS:528:DC%2BD38XkslGgtbw%3D Occurrence Handle12084634

    Article  CAS  PubMed  Google Scholar 

  16. P.K. Weiner P.A. Kollman (1981) J. Comput. Chem. 2 287 Occurrence Handle10.1002/jcc.540020311 Occurrence Handle1:CAS:528:DyaL3MXltFCltLs%3D

    Article  CAS  Google Scholar 

  17. D.A. Case D.A. Pearlman J.W. Caldwell T.E. Cheatham SuffixIII J. Wang W.S. Ross C.L. Simmerling T.A. Darden K.M. Merz R.V. Stanton A.L. .Cheng J.J. Vincent M. Crowley V. Tsui H. Gohlke R.J. Radmer Y. Duan J. Pitera I. Massova G.L. Seibel U.C. Singh P.K. Weiner P.A. Kollman (2002) Amber[7] University of California San Francisco, CA

    Google Scholar 

  18. D.A. Pearlman D.A. Case J.W. Caldwell W.S. Ross T.E. Cheatham SuffixIII S. DeBolt D. Ferguson G. Seibel P. Kollman (1995) Comput. Phys. Commun. 91 IssueID1–3 1 Occurrence Handle10.1016/0010-4655(95)00041-D Occurrence Handle1:CAS:528:DyaK2MXps1Wrtrw%3D

    Article  CAS  Google Scholar 

  19. R. Car M. Parrinell (1985) Phys. Rev. Lett. 55 2471 Occurrence Handle10.1103/PhysRevLett.55.2471 Occurrence Handle1:CAS:528:DyaL28XhtVOlug%3D%3D Occurrence Handle10032153

    Article  CAS  PubMed  Google Scholar 

  20. M. Sulpizi A. Laio J. VandeVondele A. Cattaneo U. Rothlisberger P. Carloni (2003) Proteins 52 212 Occurrence Handle10.1002/prot.10275 Occurrence Handle1:CAS:528:DC%2BD3sXlsFahtL4%3D Occurrence Handle12833545

    Article  CAS  PubMed  Google Scholar 

  21. T.J. Minehardt N. Marzari R. Cooke E. Pate P.A. Kollman R. Car (2002) Biophys. J. 82 660 Occurrence Handle1:CAS:528:DC%2BD38XovVChsw%3D%3D Occurrence Handle11806909

    CAS  PubMed  Google Scholar 

  22. P. Carloni U. Rothlisberger M. Parrinello (2002) Acc. Chem. Res. 35 IssueID6 455 Occurrence Handle10.1021/ar010018u Occurrence Handle1:CAS:528:DC%2BD38Xjs1Sgtbk%3D Occurrence Handle12069631

    Article  CAS  PubMed  Google Scholar 

  23. J.S. Tse (2002) Annu. Rev. Phys. Chem. 53 249 Occurrence Handle10.1146/annurev.physchem.53.090401.105737 Occurrence Handle1:CAS:528:DC%2BD38Xks1Ois7s%3D Occurrence Handle11972009

    Article  CAS  PubMed  Google Scholar 

  24. R. Car (2002) Quant. Struct.-Act. Relat. 21 IssueID2 97 Occurrence Handle10.1002/1521-3838(200207)21:2<97::AID-QSAR97>3.0.CO;2-6 Occurrence Handle1:CAS:528:DC%2BD38XmtVektr8%3D

    Article  CAS  Google Scholar 

  25. P. Hohenberg W. Kohn (1964) Phys. Rev. 136 B864 Occurrence Handle10.1103/PhysRev.136.B864

    Article  Google Scholar 

  26. W. Kohn L. Sham (1965) Phys. Rev. 140 A1133 Occurrence Handle10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  27. Sybyl Molecular Modeling Software [Version 6.9] 2003. Tripos, Inc., St. Louis, MO, USA

  28. Z. Li H.A. Scheraga (1987) Proc. Natl. Acad. Sci. USA 84 6611 Occurrence Handle1:CAS:528:DyaL1cXlt1emuw%3D%3D Occurrence Handle3477791

    CAS  PubMed  Google Scholar 

  29. G. Chang W.C. Guida W.C. Still (1989) J. Am. Chem. Soc. 111 4379 Occurrence Handle10.1021/ja00194a035 Occurrence Handle1:CAS:528:DyaL1MXitlSrsLo%3D

    Article  CAS  Google Scholar 

  30. M. Saunders (1987) J. Am. Chem. Soc. 109 3150 Occurrence Handle10.1021/ja00244a051 Occurrence Handle1:CAS:528:DyaL2sXktVKmt7g%3D

    Article  CAS  Google Scholar 

  31. M. Saunders K.N. Houk Y.D. Wu W.C. Still M. Lipton G. Chang W.C. Guida (1990) J. Am. Chem. Soc. 112 1419 Occurrence Handle10.1021/ja00160a020 Occurrence Handle1:CAS:528:DyaK3cXns1Sguw%3D%3D

    Article  CAS  Google Scholar 

  32. D.A. Case D.A. Pearlman J.W. Caldwell T.E. Cheatham SuffixIII J. Wang W.S. Ross C.L. Simmerling T.A. Darden K.M. Merz R.V. Stanton A.L. Cheng J.J. Vincent M. Crowley V. Tsui H. Gohlke R.J. Radmer Y. Duan J. Pitera I. Massova G.L. Seibel U.C. Singh P.K. Weiner P.A. Kollman (2002) Amber[7] University of California San Francisco, CA

    Google Scholar 

  33. W.D. Cornell P. Cieplak C.I. Bayly I.R. Gould K.M. Merz SuffixJr D.M. Ferguson D.C. Spellmeyer T. Fox J.W. Caldwell P.A. Kollman (1995) J. Am. Chem. Soc. 117 5179 Occurrence Handle10.1021/ja00124a002 Occurrence Handle1:CAS:528:DyaK2MXlsFertrc%3D

    Article  CAS  Google Scholar 

  34. C.I. Bayly P. Cieplak W. Cornell P.A. Kollman (1993) J. Phys. Chem. 97 10269 Occurrence Handle10.1021/j100142a004 Occurrence Handle1:CAS:528:DyaK3sXlvVyqsLs%3D

    Article  CAS  Google Scholar 

  35. M.J. Frisch G.W. Trucks H.B. Schlegel G.E. Scuseria M.A. Robb J.R. Cheeseman V.G. Zakrzewski J.A. Montgomery R.E. Stratmann J.C. Burant S. Dapprich J.M. Millam A.D. Daniels K.N. Kudin M.C. Strain O. Farkas J. Tomasi V. Barone M. Cossi R. Cammi B. Mennucci C. Pomelli C. Adamo S. Clifford J. Ochterski G.A. Petersson P.Y. Ayala Q. Cui K. Morokuma D.K. Malick A.D. Rabuck K. Raghavachari J.B. Foresman J. Cioslowski J.V. Ortiz B.B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. Gomperts R.L. Martin D.J. Fox T. Keith M.A. Al-Laham C.Y. Peng A. Nanayakkara C. Gonzalez M. Challacombe P.M.W. Gill B.G. Johnson W. Chen M.W. Wong J.L. Andres M. Head-Gordon E.S. Replogle J.A. Pople (1998) Gaussian 98 (Revision A1) Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  36. T.J. Minehardt R. Cooke E. Pate P.A. Kollman (2001) Biophys. J. 80 1151 Occurrence Handle1:CAS:528:DC%2BD3MXkvFCjtrg%3D Occurrence Handle11222280

    CAS  PubMed  Google Scholar 

  37. Wang J., Wang W., Kollman P.A. (2001). Antechamber: An Accessory Software Package for Molecular Mechanical Calculations. Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, USA, August 26–30, 2001, COMP-135

  38. H.J.C. Berendsen J.P.M. Postma W.F. Van Gunsteren A. DiNola J.R. Haak (1984) J. Chem. Phys. 81 3684 Occurrence Handle10.1063/1.448118 Occurrence Handle1:CAS:528:DyaL2cXmtlGksbY%3D

    Article  CAS  Google Scholar 

  39. A.D. Becke (1993) J. Chem. Phys. 98 5648 Occurrence Handle1:CAS:528:DyaK3sXisVWgtrw%3D

    CAS  Google Scholar 

  40. J.P. Perdew J.A. Chevary S.H. Vosko K.A. Jackson M.R. Pederson D.J. Singh C. Fiolhais (1992) Phys. Rev. B: Condensed Matter 46 6671 Occurrence Handle1:CAS:528:DyaK38XlvFyks7c%3D

    CAS  Google Scholar 

  41. J. Perdew W. Yang (1992) Phys. Rev. B 45 13244 Occurrence Handle10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  42. K. Laasonen A. Pasquarello R. Car C. Lee D. Vanderbilt (1993) Phys. Rev. B: Condensed Matter Mater Phys. 47 10142 Occurrence Handle1:CAS:528:DyaK3sXktlCmsLk%3D

    CAS  Google Scholar 

  43. P. Giannozzi F. De Angelis R. Car (2004) J. Chem. Phys. 120 IssueID13 5903 Occurrence Handle10.1063/1.1652017 Occurrence Handle1:CAS:528:DC%2BD2cXitlKqsL0%3D Occurrence Handle15267472

    Article  CAS  PubMed  Google Scholar 

  44. J.P. Perdew K. Burke M. Ernzerhof (1996) Phys. Rev. Lett. 77 3865 Occurrence Handle1:CAS:528:DyaK28XmsVCgsbs%3D Occurrence Handle10062328

    CAS  PubMed  Google Scholar 

  45. S. Nose (1991) Prog. Theor. Phys. Suppl. 103 1 Occurrence Handle1:CAS:528:DyaK38XmslelsA%3D%3D

    CAS  Google Scholar 

  46. L.L.C. Schrodinger (2004) Jaguar Version 4.1 Portland OR, USA

    Google Scholar 

  47. Values for the 7 torsion angles listed in Figure 1, as well as the distance from the pyridine nitrogen to the cationic center nitrogen (N1-N8), N1-NH distance and the height above the plane of the pyridine ring of the cationic center nitrogen are also provided. Note that low-energy conformations were identified that correspond to those examined by Elmore and Dougherty (Ref. 6). A1(cis7) corresponds to cis+A from that paper, while B1(cis 11), A1(trans 3) and B1(trans1) correspond to cis+B, trans+A and trans+B, repectively

  48. Using Jaguar, full minimization at the DFT level (6-311G**) followed by further refinement (HF,␣CC-PVTZ(-f)) of all MM cis and trans nicotine conformations gave similar conformations to those found’by MM, but with a somewhat more limited range for the inter-ring torsion angle. An exhaustive search at the DFT level would have likely shown additional conformations

  49. For aiMD trajectories carried out on protonated cis nicotine at 300 K (starting with cis A3), the conformation with the lowest energy (cis A1) was not found during 10 ps of dynamics. This implies a relatively large energy barrier between cis A1 and cis A3, making MD at elevated temperature necessary to thoroughly sample conformational space for the pyrrolidine ring

  50. It is of note that in a similar random search on cis nicotine, but using the MMFF force field27, A7 and B7 were also identified as the highest energy conformations of those found

  51. J.D. Schmitt (2000) Curr. Med. Chem. 7 749 Occurrence Handle1:CAS:528:DC%2BD3cXltVGitLg%3D Occurrence Handle10828287

    CAS  PubMed  Google Scholar 

  52. Schutte Ch., Cordes F., On Dynamical Transitions Between Conformational Ensembles. Molecular Dynamics on Parallel Computers, Workshop, Juelich, Feb. 8–10, 1999, pp. 32–45. 2000

  53. A. Fischer F. Cordes C. Schutte (1999) Comput. Phys. Commun. 37 121–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Hammond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond, P.S., Wu, Y., Harris, R. et al. Protonation-induced stereoisomerism in nicotine: Conformational studies using classical (AMBER) and ab initio (Car–Parrinello) molecular dynamics. J Comput Aided Mol Des 19, 1–15 (2005). https://doi.org/10.1007/s10822-005-0096-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-0096-7

Keywords

Navigation