Skip to main content
Log in

Numerical Reconstruction of Paleolithic Fires in the Chauvet-Pont d’Arc Cave (Ardèche, France)

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

The Chauvet-Pont d’Arc Cave (Ardèche, France), famous for its remarkable rock art, also contains unique thermal-alterations such as rock spalling and color changes on the walls. These alterations resulted from intense fires that have not been observed in the other decorated caves thus far discovered. The functions of these unusual fires challenge archaeologists. To characterize these combustions, we used a numerical tool, previously validated with experimental data, to study the thermo-alterations in the Megaceros Gallery. This unprecedented approach in cave art research enabled us to assess the wood quantities and locations of the hearths responsible for the thermo-alterations. We report here that at least ten fires took place in the Megaceros Gallery while burning more than 170 kg of wood. Both simulation and in situ observations suggest that the branches were arranged in a tepee shape and purposefully positioned, some distance from the walls. This method therefore enables further analysis of the functions of these fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babrauskas, V. (2016). SFPE handbook of fire protection engineering, chapter Heat Release rates. Springer.

  • Beresnev, S., & Chernyak, V. (1995). Thermophoresis of a spherical particle in rarefied gas: numerical analysis based on the model kinetic equations. Physics of Fluids, 7(7), 1743–1756.

    Article  Google Scholar 

  • Brodard, A., et al. (2014). Les rubéfactions des parois de la grotte Chauvet: une histoire de chauffe ?, Les arts de la Préhistoire : micro-analyses, mises en contextes et conservation. Paillet P. (dir).

  • Cast3m. Available: http://www-cast3m.cea.fr. [Accessed December 2019]

  • cfMesh. Available: http://cfmesh.com. [Accessed December 2019]

  • Chakrabarti, B., Yates, T., & Lewry, A. (1996). Effect of fire damage on natural stonework in buildings. Construction and Building Materials, 10(17), 539–544.

    Article  Google Scholar 

  • Chauvet, J.-M., Brunel-Deschamp, E., & Hillaire, C. (1995). La grotte Chauvet à Vallon-Pont-d’Arc. Paris: Éditions du Seuil, coll. Arts Rupestres.

    Google Scholar 

  • Clottes, J. (2001). La grotte Chauvet. L’art des origines, Paris: Editions du Seuil, coll (p. 224). Arts Rupestres.

  • Coupling. Available: https://github.com/FabienSalmon/Couplage.git [Accessed December 2019].

  • Dréan, V. et al. (2017). Numerical modelling of thermal conditions during fires in cave-like geometry, 15th International Conference and Exhibition on Fire and Materials 2017, 1, 319-333.

    Google Scholar 

  • Ferrier, C., et al. (2014). Les parois chauffées de la grotte Chauvet-Pont d’Arc (Ardèche): caractérisation et chronologie. PALEO, 25, 59–78.

    Google Scholar 

  • Ferrier, C., et al. (2017). L’utilisation du feu dans l’endokarst au paléolithique: approche interdisciplinaire et expérimentale (programme CarMoThaP). Karstologia, 70, 23–32.

    Google Scholar 

  • FireFOAM. Available: http://www.fmglobal.com/modeling. [Accessed December 2019]

  • Guibert, P., et al. (2015). When were the walls of the Chauvet-Pont d’Arc Cave heated ? A chronological approach by thermoluminescence. Quaternary Geochronology, 29, 36–47.

    Article  Google Scholar 

  • Lacanette, D., Mindeguia, J. C., Brodard, A., Ferrier, C., Guibert, P., Leblanc, J. C., Malaurent, P., & Sirieix, C. (2017). Simulation of an experimental fire in an underground limestone quarry for the study of Paleolithic fires. International Journal of Thermal Sciences, 120, 1–18.

    Article  Google Scholar 

  • Leroi-Gourhan, A. (1965). Préhistoire de l’art occidental. Paris: Mazenod.

    Google Scholar 

  • Liedgren, L., Hörnberg, G., Magnusson, T., & Östlund, L. (2017). Heat impact and soil colors beneath hearths in northern Sweden. Journal of Archaeological Science, 79, 62–72.

    Article  Google Scholar 

  • Medina-Alcaide, M., Garate-Maidagan, D., Ruiz-Redondo, A., & Sanchidrian-Torti, J. (2018). Beyond art: the internal archaeological context in Paleolithic decorated caves. Journal of Anthropological Archaeology, 49, 114–128.

    Article  Google Scholar 

  • Mindeguia, J., Carré, H., Pimienta, P., & Borderie, C. L. (2015). Experimental discussion on the mechanisms behind the fire spalling of concrete. Fire And Materials, 39(7), 619–635.

    Article  Google Scholar 

  • Purser, D. & McAllister, J. (2016). SFPE handbook of fire protection engineering, chapter Assessment of hazards to occupants from smoke, toxic gases and heat, Springer.

  • Quiles, A., Valladas, H., Geneste, J. M., Clottes, J., Baffler, D., Berthier, B., Brock, F., Ramsey, C. B., Delqué-Količ, E., Dumoulin, J. P., Hajdas, I., Hippe, K., Hodgins, G. W. L., Hogg, A., Jull, A. J. T., Kaltnecker, E., de Martino, M., Oberlin, C., Petchey, F., Steier, P., Synal, H. A., van der Plicht, J., Wild, E. M., & Zazzo, A. (2014). Second radiocarbon intercomparison program for the Chauvet-Pont d’Arc cave, Ardèche, France. Radiocarbon, 56(2), 833–850.

    Article  Google Scholar 

  • Quiles, A., Valladas, H., Bocherens, H., Delqué-Količ, E., Kaltnecker, E., van der Plicht, J., Delannoy, J. J., Feruglio, V., Fritz, C., Monney, J., Philippe, M., Tosello, G., Clottes, J., & Geneste, J. M. (2016). A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d’Arc, Ardèche, France. Proceedings of the National Academy of Sciences, 113(17), 4670–4675.

    Article  Google Scholar 

  • Ruan, H., Frost, R., Kloprogge, J., & Duong, L. (2002). Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ of the thermal transformation of goethite to hematite. Spectrochimica Acta Part A, 58, 967–981.

    Article  Google Scholar 

  • Salmon, F., et al. (2018). FireFOAM simulation of a localised fire in a gallery. Journal of Physics: Conference Series, 1107(042017).

  • Salmon, F., Lacanette, D., Mindeguia, J. C., Sirieix, C., Bellivier, A., Leblanc, J. C., & Ferrier, C. (2019). Localized fire in a gallery: model development and validation. International Journal of Thermal Sciences, 139, 144–159.

    Article  Google Scholar 

  • Salmon, F., Lacanette, D., Mindeguia, J. C., Sirieix, C., Bellivier, A., Leblanc, J. C., & Ferrier, C. (2020). Development of a fluid–structure coupling validated with a confined fire: application to painted caves. Fire Technology, 56(3), 1197–1227.

    Article  Google Scholar 

  • Speitel, L. C. (1996). Fractional effective dose model for post-crash aircraft survivability. Toxicology, 115(1-3), 167–177.

    Article  Google Scholar 

  • Théry-Parisot, I., Thiébault, S., Delannoy, J. J., Ferrier, C., Feruglio, V., Fritz, C., Gely, B., Guibert, P., Monney, J., Tosello, G., Clottes, J., & Geneste, J. M. (2018). Illuminating the cave, drawing in black: wood charcoal analysis at Chauvet-Pont d’Arc. Antiquity, 92(1362), 320–333.

    Article  Google Scholar 

  • Valladas, H., et al. (2005). Bilan des datations carbone 14 effectuées sur des charbons de bois de la grotte Chauvet. Bulletin de la Société préhistorique française, 102-1, 109–113.

    Article  Google Scholar 

  • Walter, D., Buxbaum, G., & Laqua, W. (2001). The mechanism of the thermal transformation from goethite to hematite. Journal of Thermal Analysis and Calorimetry, 63(3), 733–748.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Regional Council of Aquitaine and Nouvelle-Aquitaine for providing funding for the CarMoThap project and for their investment in a 432-processor cluster located in the I2M laboratory. This work was also performed using HPC resources from GENCI-CINES (Grant 2017-A0032B10268). The researches in the Chauvet-Pont d’Arc Cave received specific financial help from the Ministry of Culture. We thank the LCPP (Laboratoire Centrale de la Préfecture de Police) for their help in the experiment instrumentation. We thank C. Bouchet, the owner of the quarry in Fauroux (Lugasson), and M. Vidal for having made available scots pine, as well as SDIS 33 staff for the participation in the experiments of the CarMoThaP program. We also express our gratitude to V. Feruglio for her comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabien Salmon or Colette Sirieix.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmon, F., Ferrier, C., Lacanette, D. et al. Numerical Reconstruction of Paleolithic Fires in the Chauvet-Pont d’Arc Cave (Ardèche, France). J Archaeol Method Theory 28, 604–616 (2021). https://doi.org/10.1007/s10816-020-09484-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-020-09484-5

Keywords

Navigation