Skip to main content
Log in

Sodium-Hydrogen-Exchanger expression in human sperm and its relationship with semen parameters

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Sperm-specific sodium-hydrogen exchanger (sNHE) is essential to maintain sperm normal function in mice; however, its role in human sperm has not been clarified to date. The aim of this study is to investigate the expression pattern of sNHE in human spermatozoa and its relationship with sperm functional parameters.

Method

Semen samples from 68 asthenozoospermic and 61 normozoospermic men were analyzed for sperm concentration, motility, and acrosome reaction, and high motile spermatozoa were collected by swim-up method. The expression of sNHE in spermatozoa was detected by Western blot and immunofluorescence staining. The relationship between sNHE expression and sperm parameters was assessed.

Results

We identified sNHE is mainly localized to the principal piece of the human sperm tail. The expression of sNHE was positively correlated with sperm concentration, total number, and progressive motility. Moreover, sNHE expression was upregulated in swim-up sperm and associated with most of sperm motility parameters including straight line velocity and curvilinear velocity. Our results also showed that sNHE expression is decreased in sperm from patients with asthenozoospermia compared with that from normal controls. However, no correlation was found between sNHE expression and acrosome reaction in spermatozoa.

Conclusions

The expression pattern of sNHE suggested that this protein may be involved in the regulation of sperm motility, and aberration of its expression in sperm may contribute to the pathogenesis of asthenozoospermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Skakkebaek NE, Jorgensen N, Main KM, Rajpert-De Meyts E, Leffers H, Andersson AM, et al. Is human fecundity declining? Int J Androl. 2006;29(1):2–11. doi:10.1111/j.1365-2605.2005.00573.x.

    Article  PubMed  Google Scholar 

  2. Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril. 2015;103(3):e18–25. doi:10.1016/j.fertnstert.2014.12.103.

  3. Yoshida M, Kawano N, Yoshida K. Control of sperm motility and fertility: diverse factors and common mechanisms. Cellular and molecular life sciences: CMLS. 2008;65(21):3446–57. doi:10.1007/s00018-008-8230-z.

    Article  CAS  PubMed  Google Scholar 

  4. Bajpai M, Doncel GF. Involvement of tyrosine kinase and cAMP-dependent kinase cross-talk in the regulation of human sperm motility. Reproduction (Cambridge, England). 2003;126(2):183–95.

    Article  CAS  Google Scholar 

  5. Singh AP, Rajender S. CatSper channel, sperm function and male fertility. Reprod BioMed Online. 2015;30(1):28–38. doi:10.1016/j.rbmo.2014.09.014.

    Article  PubMed  Google Scholar 

  6. Skalhegg BS, Huang Y, Su T, Idzerda RL, McKnight GS, Burton KA. Mutation of the Calpha subunit of PKA leads to growth retardation and sperm dysfunction. Molecular endocrinology (Baltimore, Md). 2002;16(3):630–9. doi:10.1210/mend.16.3.0793.

    CAS  Google Scholar 

  7. Liu SW, Li Y, Zou LL, Guan YT, Peng S, Zheng LX, et al. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia. Asian journal of andrology. 2016; doi:10.4103/1008-682x.181816.

    Google Scholar 

  8. Liu B, Wang P, Wang Z, Jia Y, Niu X, Wang W, et al. Analysis and difference of voltage-dependent anion channel mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia. J Assist Reprod Genet. 2010a;27(12):719–24. doi:10.1007/s10815-010-9466-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Donowitz M, Ming Tse C, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol Asp Med. 2013;34(2–3):236–51. doi:10.1016/j.mam.2012.05.001.

    Article  CAS  Google Scholar 

  10. Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Archiv: European journal of physiology. 2014;466(1):61–76. doi:10.1007/s00424-013-1408-8.

    Article  CAS  PubMed  Google Scholar 

  11. Xu H, Chen H, Li J, Zhao Y, Ghishan FK. Disruption of NHE8 expression impairs Leydig cell function in the testes. American journal of physiology Cell physiology. 2015;308(4):C330–8. doi:10.1152/ajpcell.00289.2014.

    Article  CAS  PubMed  Google Scholar 

  12. Woo AL, James PF, Lingrel JB. Roles of the Na, K-ATPase alpha 4 isoform and the Na+/H+ exchanger in sperm motility. Mol Reprod Dev. 2002;62(3):348–56. doi:10.1002/mrd.90002.

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL. A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol. 2003;5(12):1117–22. doi:10.1038/ncb1072.

    Article  CAS  PubMed  Google Scholar 

  14. Bell SM, Schreiner CM, Schultheis PJ, Miller ML, Evans RL, Vorhees CV, et al. Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. Am J Phys. 1999;276(4 Pt 1):C788–95.

    CAS  Google Scholar 

  15. Liu T, Huang JC, Zuo WL, Lu CL, Chen M, Zhang XS, et al. A novel testis-specific Na+/H+ exchanger is involved in sperm motility and fertility. Frontiers in bioscience (Elite edition). 2010b;2:566–81.

    Article  Google Scholar 

  16. Mortimer ST, Swan MA, Mortimer D. Effect of seminal plasma on capacitation and hyperactivation in human spermatozoa. Human reproduction (Oxford, England). 1998;13(8):2139–46.

    Article  CAS  Google Scholar 

  17. Hamamah S, Gatti JL. Role of the ionic environment and internal pH on sperm activity. Human reproduction (Oxford, England). 1998;13(Suppl 4):20–30.

    Article  CAS  Google Scholar 

  18. Darszon A, Trevino CL, Wood C, Galindo B, Rodriguez-Miranda E, Acevedo JJ, et al. Ion channels in sperm motility and capacitation. Society of Reproduction and Fertility supplement. 2007;65:229–44.

    CAS  PubMed  Google Scholar 

  19. Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, et al. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci U S A. 2007;104(22):9325–30. doi:10.1073/pnas.0611296104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tamburrino L, Marchiani S, Vicini E, Muciaccia B, Cambi M, Pellegrini S, et al. Quantification of CatSper1 expression in human spermatozoa and relation to functional parameters. Human reproduction (Oxford, England). 2015;30(7):1532–44. doi:10.1093/humrep/dev 103.

    Article  CAS  Google Scholar 

  21. Soda T, Miyagawa Y, Ueda N, Takezawa K, Okuda H, Fukuhara S, et al. Systematic characterization of human testis-specific actin capping protein β3 as a possible biomarker for male infertility. Hum Reprod (Oxford, England). 2017 Jan 18; doi:10.1093/humrep/dew 353.

    Google Scholar 

  22. Shi Y, Yuan H, Kim D, Chanana V, Baba A, Matsuda T, et al. Stimulation of Na+/H+ exchanger isoform 1 promotes microglial migration. PLoS One. 2013;8(8):e74201. doi:10.1371/journal.pone.0074201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huetsch JC, Jiang H, Larrain C, Shimoda LA. The Na+/H+ exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension. Physiological reports. 2016;4:5. doi:10.14814/phy2.12729.

    Article  Google Scholar 

  24. Van den Bergh M, Emiliani S, Biramane J, Vannin AS, Englert Y. A first prospective study of the individual straight line velocity of the spermatozoon and its influences on the fertilization rate after intracytoplasmic sperm injection. Human reproduction (Oxford, England). 1998;13(11):3103–7.

    Article  CAS  Google Scholar 

  25. Florman HM, Jungnickel MK, Sutton KA. Shedding light on sperm pHertility. Cell. 2010;140(3):310–2. doi:10.1016/j.cell.2010.01.035.

    Article  CAS  PubMed  Google Scholar 

  26. Nishigaki T, Jose O, Gonzalez-Cota AL, Romero F, Trevino CL, Darszon A. Intracellular pH in sperm physiology. Biochem Biophys Res Commun. 2014;450(3):1149–58. doi:10.1016/j.bbrc.2014.05.100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14(6):647–57. doi:10.1093/humupd/dmn029.

    Article  CAS  PubMed  Google Scholar 

  28. Wiser A, Sachar S, Ghetler Y, Shulman A, Breitbart H. Assessment of sperm hyperactivated motility and acrosome reaction can discriminate the use of spermatozoa for conventional in vitro fertilisation or intracytoplasmic sperm injection: preliminary results. Andrologia. 2014;46(3):313–5. doi:10.1111/and.12068.

    Article  CAS  PubMed  Google Scholar 

  29. Stival C, Puga Molina Ldel C, Paudel B, Buffone MG, Visconti PE, Krapf D. Sperm capacitation and acrosome reaction in mammalian sperm. Adv Anat Embryol Cell Biol. 2016;220:93–106. doi:10.1007/978-3-319-30567-7_5.

    Article  PubMed  Google Scholar 

  30. Garcia MA, Meizel S. Regulation of intracellular pH in capacitated human spermatozoa by a Na+/H+ exchanger. Mol Reprod Dev. 1999;52(2):189–95. doi:10.1002/(sici)1098-2795(199902)52:2<189::aid-mrd10>3.0.co;2-d.

    Article  CAS  PubMed  Google Scholar 

  31. Tomlinson M, Lewis S, Morroll D. Sperm quality and its relationship to natural and assisted conception: British fertility society guidelines for practice. Human fertility (Cambridge, England). 2013;16(3):175–93. doi:10.3109/14647273.2013.807522.

    Article  Google Scholar 

  32. Verheyen G, Tournaye H, Staessen C, De Vos A, Vandervorst M, Van Steirteghem A. Controlled comparison of conventional in-vitro fertilization and intracytoplasmic sperm injection in patients with asthenozoospermia. Human reproduction (Oxford, England). 1999;14(9):2313–9.

    Article  CAS  Google Scholar 

  33. Ben-Chetrit A, Senoz S, Greenblatt EM, Casper RF. In vitro fertilization outcome in the presence of severe male factor infertility. Fertil Steril. 1995;63(5):1032–7.

    Article  CAS  PubMed  Google Scholar 

  34. Liu T, Huang JC, Lu CL, Yang JL, Hu ZY, Gao F, et al. Immunization with a DNA vaccine of testis-specific sodium-hydrogen exchanger by oral feeding or nasal instillation reduces fertility in female mice. Fertil Steril. 2010c;93(5):1556–66. doi:10.1016/j.fertnstert.2009.03.056.

    Article  CAS  PubMed  Google Scholar 

  35. Peralta-Arias RD, Vívenes CY, Camejo MI, Piñero S, Proverbio T, Martínez E, et al. ATPases, ion exchangers and human sperm motility. Reproduction. 2015;149(5):475–84. doi:10.1530/REP-14-0471.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Peking University 985 Clinical Hospital Cooperation Program to Hui Jiang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jiang.

Ethics declarations

The study was approved by the Ethical Committee and conducted according to the Helsinki Declaration. Every subject was fully informed of the purpose of the study and provided informed consent before the research.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, Y., Wu, H. et al. Sodium-Hydrogen-Exchanger expression in human sperm and its relationship with semen parameters. J Assist Reprod Genet 34, 795–801 (2017). https://doi.org/10.1007/s10815-017-0898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0898-2

Keywords

Navigation