Skip to main content
Log in

Analysis and difference of voltage-dependent anion channel mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To analyze the abundance and difference of voltage-dependent anion channel (VDAC) mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia.

Methods

High motile and low motile spermatozoa were separated respectively from ejaculates of 36 donors and 40 patients using a discontinuous Percoll gradient centrifugation. Real-Time PCR was performed to detect mRNA abundance and difference of three VDAC subtypes between two groups with different sperm motility.

Results

Real-Time PCR demonstrated that three VDAC mRNAs were present in mature spermatozoa. The VDAC2 mRNA level in ejaculated spermatozoa of patients was significantly higher than that of donors. No significant differences of VDAC1 and VDAC3 mRNA levels were found between two groups.

Conclusion

The high abundance of VDAC2 mRNA seemed to have a positive correlation with low sperm motility. The abnormal expression of VDAC might be related to male infertility with idiopathic asthenozoospermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schein SJ, Colombini M, Finkelstein A. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol. 1976;30:99–120.

    Article  CAS  PubMed  Google Scholar 

  2. Young MJ, Bay DC, Hausner G, Court DA. The evolutionary history of mitochondrial porins. BMC Evol Biol. 2007;7:31.

    Article  PubMed  Google Scholar 

  3. Decker WK, Bowles KR, Schatte EC, Towbin JA, Craigen WJ. Revised fine mapping of the human voltage-dependent anion channel loci by radiation hybrid analysis. Mamm Genome. 1999;10:1041–2.

    Article  CAS  PubMed  Google Scholar 

  4. Decker WK, Craigen WJ. The tissue-specific, alternatively spliced single ATG exon of the type 3 voltage-dependent anion channel gene does not create a truncated protein isoform in vivo. Mol Genet Metab. 2000;70:69–74.

    Article  CAS  PubMed  Google Scholar 

  5. Benz R. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta. 1994;1197:167–96.

    CAS  PubMed  Google Scholar 

  6. Rostovtseva TK, Bezrukov SM. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys J. 1998;74:2365–73.

    Article  CAS  PubMed  Google Scholar 

  7. Pavlov E, Grigoriev SM, Dejean LM, Zweihorn CL, Mannella CA, Kinnally KW. The mitochondrial channel VDAC has a cation-selective open state. Biochim Biophys Acta. 2005;1710:96–102.

    Article  CAS  PubMed  Google Scholar 

  8. Choudhary OP, Ujwal R, Kowallis W, Coalson R, Abramson J, Grabe M. The electrostatics of VDAC: implications for selectivity and gating. J Mol Biol. 2010;396:580–92.

    Article  CAS  PubMed  Google Scholar 

  9. Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol. 1997;157:271–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tsujimoto Y, Shimizu S. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie. 2002;84:187–93.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science. 2003;301:513–7.

    Article  CAS  PubMed  Google Scholar 

  12. Shoshan-Barmatz V, Hadad N, Feng W, Shafir I, Orr I, Varsanyi M, et al. VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett. 1996;386:205–10.

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem. 2003;278:27312–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sabirov RZ, Sheiko T, Liu H, Deng D, Okada Y, Craigen WJ. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. J Biol Chem. 2006;281:1897–904.

    Article  CAS  PubMed  Google Scholar 

  15. Hinsch KD, De Pinto V, Aires VA, Schneider X, Messina A, Hinsch E. Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum. J Biol Chem. 2004;279:15281–8.

    Article  CAS  PubMed  Google Scholar 

  16. Guarino F, Specchia V, Zapparoli G, Messina A, Aiello R, Bozzetti MP, et al. Expression and localization in spermatozoa of the mitochondrial porin isoform 2 in Drosophila melanogaster. Biochem Biophys Res Commun. 2006;346:665–70.

    Article  CAS  PubMed  Google Scholar 

  17. Arcelay E, Salicioni AM, Wertheimer E, Visconti PE. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol. 2008;52:463–72.

    Article  CAS  PubMed  Google Scholar 

  18. Menzel VA, Cassará MC, Benz R, de Pinto V, Messina A, Cunsolo V, et al. Molecular and functional characterization of VDAC2 purified from mammal spermatozoa. Biosci Rep. 2009;29:351–62.

    Article  CAS  PubMed  Google Scholar 

  19. Liu B, Zhang W, Wang Z. Voltage-dependent anion channel in mammalian spermatozoa. Biochem Biophys Res Commun. 2010;397:633–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sampson MJ, Decker WK, Beaudet AL, Ruitenbeek W, Armstrong D, Hicks MJ, et al. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem. 2001;276:39206–12.

    Article  CAS  PubMed  Google Scholar 

  21. Curi SM, Ariagno JI, Chenlo PH, Mendeluk GR, Pugliese MN, Sardi Segovia LM, et al. Asthenozoospermia: analysis of a large population. Arch Androl. 2003;49:343–9.

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Wang Z, Zhang W, Wang X. Expression and localization of voltage-dependent anion channels (VDAC) in human spermatozoa. Biochem Biophys Res Commun. 2009;378:366–70.

    Article  CAS  PubMed  Google Scholar 

  23. World Health Organization. Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. UK: Cambridge University Press; 1999.

    Google Scholar 

  24. Lambard S, Galeraud-Denis I, Bouraïma H, Bourguiba S, Chocat A, Carreau S. Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol Hum Reprod. 2003;9:117–24.

    Article  CAS  PubMed  Google Scholar 

  25. Lambard S, Galeraud-Denis I, Martin G, Levy R, Chocat A, Carreau S. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10:535–41.

    Article  CAS  PubMed  Google Scholar 

  26. Lambard S, Galeraud-Denis I, Saunders PT, Carreau S. Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. J Mol Endocrinol. 2004;32:279–89.

    Article  CAS  PubMed  Google Scholar 

  27. Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429:154.

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Zhou Z, Xu M, Li J, Xiao J, Xu ZY, et al. Spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J Mol Med. 2004;82:317–24.

    Article  PubMed  Google Scholar 

  30. García-Herrero S, Garrido N, Martínez-Conejero JA, Remohí J, Pellicer A, Meseguer M. Ontological evaluation of transcriptional differences between sperm of infertile males and fertile donors using microarray analysis. J Assist Reprod Genet. 2010;27:111–20.

    Article  PubMed  Google Scholar 

  31. Messina A, Oliva M, Rosato C, Huizing M, Ruitenbeek W, van den Heuvel LP, et al. Mapping of the human voltage-dependent anion channel isoforms 1 and 2 reconsidered. Biochem Biophys Res Commun. 1999;255:707–10.

    Article  CAS  PubMed  Google Scholar 

  32. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med. 2010;31:227–85.

    Article  CAS  PubMed  Google Scholar 

  33. Hinsch KD, Asmarinah, Hinsch E, Konrad L. VDAC2 (porin-2) expression pattern and localization in the bovine testis. Biochim Biophys Acta. 2001;1518:329–33.

    CAS  PubMed  Google Scholar 

  34. Flörke H, Thinnes FP, Winkelbach H, Stadtmüller U, Paetzold G, Morys-Wortmann C, et al. Channel active mammalian porin, purified from crude membrane fractions of human B lymphocytes and bovine skeletal muscle, reversibly binds adenosine triphosphate (ATP). Biol Chem Hoppe Seyler. 1994;375:513–20.

    PubMed  Google Scholar 

  35. Triphan X, Menzel VA, Petrunkina AM, Cassará MC, Wemheuer W, Hinsch KD, et al. Localisation and function of voltage-dependent anion channels (VDAC) in bovine spermatozoa. Pflugers Arch. 2008;455:677–86.

    Article  CAS  PubMed  Google Scholar 

  36. Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68:1590–6.

    Article  CAS  PubMed  Google Scholar 

  37. Luconi M, Porazzi I, Ferruzzi P, Marchiani S, Forti G, Baldi E. Tyrosine phosphorylation of the A kinase anchoring protein 3 (AKAP3) and soluble adenylate cyclase are involved in the increase of human sperm motility by bicarbonate. Biol Reprod. 2005;72:22–32.

    Article  CAS  PubMed  Google Scholar 

  38. Krasznai Z, Krasznai ZT, Morisawa M, Bazsáné ZK, Hernádi Z, Fazekas Z, et al. Role of the Na+/Ca2+ exchanger in calcium homeostasis and human sperm motility regulation. Cell Motil Cytoskeleton. 2006;63:66–76.

    Article  CAS  PubMed  Google Scholar 

  39. Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a spermspecific glycolytic enzyme, is required for sperm motility and male fertility. Proc NatlAcad Sci USA. 2004;101:16501–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University for the technical assistance. This work was supported by the grant from National Natural Science Foundation of China (30872575).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengjun Wang or Wei Zhang.

Additional information

Capsule

The high abundance of VDAC2 mRNA seemed to have a positive correlation with low sperm motility in male infertility with idiopathic asthenozoospermia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Wang, P., Wang, Z. et al. Analysis and difference of voltage-dependent anion channel mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia. J Assist Reprod Genet 27, 719–724 (2010). https://doi.org/10.1007/s10815-010-9466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9466-8

Keywords

Navigation