Skip to main content
Log in

A greater number of euploid blastocysts in a given cohort predicts excellent outcomes in single embryo transfer cycles

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This multicentered retrospective study analyzed whether the quantity of euploid blastocysts in a given cohort after comprehensive chromosomal screening can be used to identify candidates for single embryo transfer.

Methods

Blastocysts from 437 patients underwent trophectoderm biopsy followed by array comparative genomic hybridization. Embryos were then selected for single or double embryo transfer. The number of euploid blastocysts produced and transferred for each patient was recorded, as was clinical pregnancy rate and multiple gestation rate.

Results

In patients with ≤3 euploid blastocysts, clinical pregnancy rate was higher in double, compared to single embryo transfers. However, in patients with ≥4 euploid blastocysts, clinical pregnancy rate was not reduced with single embryo transfer was performed, whereas the multiple gestation rate was greatly reduced.

Conclusions

Size of the euploid embryo cohort is a marker for success in single embryo transfer cycles. Patients who produce at least four euploid blastocysts are outstanding candidates for single embryo transer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunderam S, Kissin D, Flowers L, Anderson J, Folger S, Jamieson D, et al. Assisted reproductive technology surveillance – United States, 2009 Surveillance Summaries. MMWR Surveill Summ. 2012;61:1–23.

    PubMed  Google Scholar 

  2. Society for Assisted Reproductive Technology Clinic Summary Report 2011, retrieved on February 5th, 2013. (https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=0)

  3. Sibai BM, Hauth J, Caritis S, Lindheimer MD, Macpherson C, Klebanoff M, et al. Hypertensive disorders in twin versus singleton gestations. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol. 2000;182:938–42.

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz DB, Daoud Y, Zazula P, Goyert G, Bronsteen R, Wright D, et al. Gestational diabetes mellitus: metabolic and blood glucose parameters in singleton versus twin pregnancies. Am J Obstet Gynecol. 1999;181:912–4.

    Article  CAS  PubMed  Google Scholar 

  5. Martin JA, Hamilton BE, Sutton PD. Births: final data for 2002. Natl Vital Stat Rep. 2003;52:1–102.

    PubMed  Google Scholar 

  6. Grether JK, Nelson KB, Cummins SK. Twinning and cerebral palsy: experience in four northern California counties, births: 1983 through 1985. Pediatrics. 1993;92:854–8.

    CAS  PubMed  Google Scholar 

  7. Luke B, Minogue J. The contribution of gestational age and birth weight to perinatal viability in singletons versus twins. J Matern Fetal Med. 1994;3:263–74.

    Article  Google Scholar 

  8. Mullin CM, Fine ME, Talebian S, Krey LC, Licciardi F, Grifo JA. Comparison of pregnancy outcomes in elective single blastocyst transfer versus double blastocyst transfer stratified by age. Fertil Steril. 2010;93:1837–43.

    Article  PubMed  Google Scholar 

  9. Styer AK, Wright DL, Wolkovich AM, Veiga C, Toth TL. Single-blastocyst transfer decreases twin gestation without affecting pregnancy outcome. Fertil Steril. 2008;89:1702–8.

    Article  PubMed  Google Scholar 

  10. Pandian Z, Bhattacharya S, Ozturk O, Serour G, Templeton A. Number of embryos for transfer following in-vitro fertilization or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev (Online). 2009;2, CD003416.

    Google Scholar 

  11. De Sutter P, Van Der Elst J, Coetsier T, Dhont M. Single embryo transfer and multiple pregnancy rate reduction in IVF/ICSI: a 5-year appraisal. Reprod Biomed Online. 2003;6:464–9.

    Article  PubMed  Google Scholar 

  12. Tiitinen A, Unkila-kallio L, Halttunen M, Hyden-granskog C. Impact of elective single embryo transfer on the twin pregnancy rate. Hum Reprod. 2003;18:1449–53.

    Article  CAS  PubMed  Google Scholar 

  13. Munné S, Alikani M, Tomkin G, Grifo JA, Cohen J. Embryo morphology, developmental rates and maternal age are correlated with chromosome abnormalities. Fertil Steril. 1995;64:382–91.

    PubMed  Google Scholar 

  14. Munné S, Chen S, Colls P, Garrisi J, Zheng X, Cekleniak N, et al. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online. 2007;14:628–34.

    Article  PubMed  Google Scholar 

  15. Magli MC, Gianaroli L, Ferraretti AP, Lappi M, Ruberti A, Farfalli V. Embryo morphology and development are dependent on the chromosomal complement. Fertil Steril. 2007;87:534–41.

    Article  PubMed  Google Scholar 

  16. Alfarawati S, Fragouli E, Colls P, Stevens J, Gutierrez-Mateo C, Schoolcraft WB, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.

    Google Scholar 

  17. Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod. 2002;17:413–9.

    Article  PubMed  Google Scholar 

  18. Munné S, Bahçe M, Sandalinas M, Escudero T, Márquez C, Velilla E, et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online. 2004;8:81–90.

    Article  PubMed  Google Scholar 

  19. Munné S, Fischer J, Warner A, Chen S, Zouves C, Cohen J, et al. Preimplantation genetic diagnosis significantly reduces pregnancy loss in infertile couples: a multi-center study. Fertil Steril. 2006;85:326–32.

    Article  PubMed  Google Scholar 

  20. Bettio D, Venci A, Levi Setti PE. Chromosomal abnormalities in miscarriages after different assisted reproduction procedures. Placenta. 2008;29(Suppl B):126–8.

    Article  PubMed  Google Scholar 

  21. Werner M, Reh A, Grifo J, Perle MA. Characteristics of chromosomal abnormalities diagnosed after spontaneous abortions in an infertile population. J Assist Reprod Genet. 2012;8:817–20.

    Article  Google Scholar 

  22. Hodes-wertz B, Grifo JA, Ghadir S, Kaplan B, Laskin K, Glassner M, et al. Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos. Fertil Steril. 2012;98:675–80.

    Article  PubMed  Google Scholar 

  23. Fragouli E, Wells D, Delhanty JD. Chromosome abnormalities in the human oocyte. Cytogenet Genome Res. 2011;133:108–17.

    Google Scholar 

  24. Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012;97:819–24.

    Article  CAS  PubMed  Google Scholar 

  25. Gutierrez-Mateo C, Colls P, Sanchez-Garcia J, Escudero T, Prates R, Ketterson K, et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2011;95:953–8.

    Google Scholar 

  26. Schoolcraft WB, Katz-jaffe MG, Stevens J, Rawlins M, Munné S. Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril. 2009;94:1700–6.

    Article  PubMed  Google Scholar 

  27. Scott RT, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012;97:870–5.

    Article  PubMed  Google Scholar 

  28. Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, et al. Selection of single blastocysts for fresh transfer via morphology alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5:24.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Grifo JA, Hodes-wertz B, Hsiao-ling L, Amperloquio E, Clarke-williams M, Adler A. Single thawed euploid embryo transfer improves IVF pregnancy, miscarriage, and multiple gestation outcomes and has similar implantation rates as egg donation. J Assist Reprod Genet. 2013;30:259–64.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Harton GL, Munné S, Surrey M, Grifo J, Kaplan B, Mcculloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100:1695–703.

    Google Scholar 

  31. Forman EJ, Tao X, Ferry KM, Taylor D, Treff NR, Scott RT. Single embryo transfer with comprehensive chromosome screening results in improved ongoing pregnancy rates and decreased miscarriage rates. Hum Reprod. 2012;4:1217–22.

    Article  Google Scholar 

  32. Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100:100–7.

    Article  PubMed  Google Scholar 

  33. Devreker F, Pogonici E, De Maertelaer V, Revelard P, Van Den Bergh M, Englert Y. Selection of good embryos for transfer depends on cohort size: implications for the ‘mild ovarian stimulation debate’. Hum Reprod. 1999;14:3002–8.

    Article  CAS  PubMed  Google Scholar 

  34. Steinberg ML, Boulet S, Kissin D, Warner L, Jamieson DJ. Elective single embryo transfer trends and predictors of good perinatal outcome – United States, 1999–2010. Fertil Steril. 2013;99:1937–43.

    Article  PubMed  Google Scholar 

  35. Mullin CM, Berkeley AS, Grifo JA. Supernumerary blastocyst cryopreservation: a key prognostic indicator for patients opting for an elective single blastocyst transfer (eSBT). J Assist Reprod Genet. 2012;29:783–8.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ata B, Kaplan B, Danzer H, Glassner M, Opsahl M, Tan SL, et al. Array CGH analysis shows that aneuploidy is not related to the number of embryos generated. Reprod Biomed Online. 2012;24:614–20.

    Article  CAS  PubMed  Google Scholar 

  37. Baart EB, Martini E, Eijkemans MJ, Opstal D, Beckers NG, Verhoeff A, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod. 2007;4:980–8.

    Article  Google Scholar 

  38. Milki AA, Jun SH, Hinckley MD, Behr B, Giudice LC, Westhpal LM. Incidence of monozygotic twinning with blastocyst transfer compared to cleavage-stage transfer. Fertil Steril. 2003;79:503–6.

    Article  PubMed  Google Scholar 

  39. Skiadas CC, Missmer SA, Benson CB, Gee RE, Racowsky C. Risk factors associated with pregnancies containing a monochorionic pair following assisted reproductive technologies. Hum Reprod. 2008;23:1366–71.

    Article  PubMed  Google Scholar 

  40. Tarlatzis BC, Qublan HS, Sanopoulou T, Zepiridis L, Grimbizis G, Bontis J. Increase in the monozygotic twinning rate after intracytoplasmic sperm injection and blastocyst stage embryo transfer. Fertil Steril. 2002;77:196–8.

    Article  PubMed  Google Scholar 

  41. Elizur SE, Levron J, Shrim A, Sivan E, Dor J, Shulman A. Monozygotic twinning is not associated with zona pellucida micromanipulation procedures but increases with high-order multiple pregnancies. Fertil Steril. 2004;82:500–1.

    Article  PubMed  Google Scholar 

  42. Yanaihara A, Yorimitsu T, Motoyama H, Watanabe H, Kawamura T. Monozygotic multiple gestation following in vitro fertilization: analysis of seven cases from Japan. J Exp Clin Assist Reprod. 2007;4:4.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Verpoest W, Van Landuyt L, Desmyttere S, Cremers A, Devroey P, Liebaers I. The incidence of monozygotic twinning following PGD is not increased. Hum Reprod. 2009;24:2945–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank our referral centers for their assistance with the collection of data. The referral centers who contributed to this work are ART Reproductive Center (Beverly Hills, CA), San Diego Fertility Center (San Diego, CA), La Jolla IVF (La Jolla, CA), Stanford Fertility Clinic (Stanford, CA), Acacio Fertility Center (Laguna Niguel, CA), OriginElle Fertility Clinic (Montreal, Quebec), NewLIFE – New Leaders in Fertility and Endocrinology (Pensacola, FL), Reproductive Biology Associates (Atlanta, GA), Georgia Reproductive Specialists (Atlanta, GA), Fertility Centers of Illinois (Highland Park, IL), Boston IVF (Waltham, MA), Fertility Center of Las Vegas (Las Vegas, NV), NYU Fertility Center (New York, NY), Oregon Reproductive Medicine (Portland, OR), and Main Line Fertility and Reproductive Medicine (Bryn Mawr, PA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Morin.

Additional information

Capsule This multicentered studied demonstrates that patients who produce ≥4 euploid embryos have equivalent clinical pregnancy rates whether one or two embryos is replaced.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, S., Melzer-Ross, K., McCulloh, D. et al. A greater number of euploid blastocysts in a given cohort predicts excellent outcomes in single embryo transfer cycles. J Assist Reprod Genet 31, 667–673 (2014). https://doi.org/10.1007/s10815-014-0217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0217-0

Keywords

Navigation