Skip to main content
Log in

Tunable Refractive Index Sensor Made Using Graphene with a High Figure of Merit

  • Published:
Journal of Applied Spectroscopy Aims and scope

Plasmonic effects can be used in high sensitivity sensors, which have attracted widespread attention. However, most of the previously reported refractive index sensors can no longer be adjusted once fabricated, and their figure of merit (FOM) is undesirable. Concerning this, we propose a refractive index sensor consisting of a graphene waveguide and a graphene elliptical cavity working in the mid-infrared range. Its performance can be adjusted in real time by applying a bias voltage to the graphene patterns. The sensitivity of the proposed sensor can reach 2850 nm/refractive index unit and FOM up to 633, respectively. Owing to its excellent sensing properties of high sensitivity and high FOM, the proposed sensor can be applied in gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. L. Koppens, D. E. Chang, and G. D. A. F. Javier, Nano Lett., 11, No. 8, Article ID 3370 (2011).

  2. A. S. Rodin, Z. Fei, A. S. Mcleod, et al., Physics (2016).

  3. L. Ju, B. Geng, J. Horng, et al., Nature Nanotech., 6, No. 10, 630 (2011).

    Article  ADS  Google Scholar 

  4. D. B. Farmer, D. Rodrigo, T. Low, et al., Nano Lett., 15, No. 4, 2582–2587 (2015).

    Article  ADS  Google Scholar 

  5. P. Li, T. Wang, H. Böckmann, et al., Nano Lett., 14, No. 8, Article ID 4400 (2014).

  6. B. Vasić, G. Isić, and R. Gajić, J. Appl. Phys., 113, No. 1, Article ID 21556 (2013).

  7. Y. Li, H. Yan, D. B. Farmer, et al., Nano Lett., 14, No. 3, 1573 (2014).

    Article  ADS  Google Scholar 

  8. W. Wei, J. Nong, Y. Zhu, et al., Opt. Commun. (2016).

  9. J. N. Anker, W. P. Hall, O. Lyandres, et al., Nanosci. Technol.: A Collection Rev. from Nature J., 308–319 (2010).

  10. L. A. Falkovsky, Phys. Usp., 51, No. 9, 887–897 (2008).

    Article  ADS  Google Scholar 

  11. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science & Business Media (2007).

    Book  Google Scholar 

  12. V. G. Kravets, R. Jalil, Y. J. Kim, et al., Sci. Reports, 4, 5517 (2014).

    Google Scholar 

  13. O. Salihoglu, S. Balci, and C. Kocabas, Appl. Phys. Lett., 100, No. 21, Article ID 213110 (2012).

  14. P. R. Griffiths and J. A. D. Haseth, Fourier Transform Infrared Spectrometry, 2nd Ed., Proteomics (2007).

  15. D. Rodrigo, O. Limaj, D. Janner, et al., Mid-Infrared Plasmonic Biosensing with Graphene. Science, 349(6244), 165–168 (2015).

  16. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B Chem., 54, Nos. 1–2, 3–15 (1999).

    Article  Google Scholar 

  17. S. Law, V. Podolskiy, and D. Wasserman, Nanophotonics, 2, No. 2, 103–130 (2013).

    Article  ADS  Google Scholar 

  18. J. M. Bingham, J. N. Anker, L. E. Kreno, et al., J. Am. Chem. Soc., 132, No. 49, 17358–17359 (2010).

    Article  Google Scholar 

  19. M. W. Sigrist, R. Bartlome, D. Marinov, et al., Appl. Phys. B, 90, No. 2, 289–300 (2008).

    Article  ADS  Google Scholar 

  20. X. Yan, T. Wang, X. Han, et al., Plasmonics, 1–7 (2016).

  21. T. Wenger, G. Viola, J. Kinaret, et al., Materials, 4, No. 2 (2017).

  22. R. E. Peale, J. W. Cleary, W. R. Buchwald, et al., Proc. SPIE, The Int. Soc. Opt. Eng., 767306(95), 730–734 (2010).

  23. B. Wang and G. P. Wang, Appl. Phys. Lett., 87, No. 1, Article ID 013107(1–3) (2005).

  24. L. A. Falkovsky, J. Exp. Theor. Phys., 106, No. 3, 575–580 (2008).

    Article  ADS  Google Scholar 

  25. B. Ruan, Q. You, J. Zhu, et al., IEEE Sensors J., 18, 7436–7441 (2018).

    Article  ADS  Google Scholar 

  26. D. Wu, J. Tian, L. Li, et al., Opt. Commun., 412, 41–48 (2018).

    Article  ADS  Google Scholar 

  27. G. W. Hanson, J. Appl. Phys., 103, No. 6, Article ID 064302 (2008).

  28. A. Moreau, C. Ciracì, et al., Nature, 492(7427), 86–89 (2012).

    Article  ADS  Google Scholar 

  29. B. Zhu, G. Ren, S. Zheng, et al., Opt. Express, 21, No. 14, 17089–17096 (2013).

    Article  ADS  Google Scholar 

  30. X . Wang, T. He, M. A. Mohammad, et al., Nat. Commun., 6, Article ID 7767 (2015).

  31. D. Yadav, S. B. Tombet, T. Watanabe, et al., Materials, 3, No. 4, Article ID 045009 (2016).

  32. X. Binggang, T. Shengjun, A. Fyffe, and Z. Shi, Opt. Express, 28, 4048–4057 (2020).

    Article  Google Scholar 

  33. Y. Zhang and M. Cui, J. Electron. Mater., 48, No. 2, 1005–1010 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Xiao.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 5, pp. 719–725, September–October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, X., Lin, H. et al. Tunable Refractive Index Sensor Made Using Graphene with a High Figure of Merit. J Appl Spectrosc 89, 923–929 (2022). https://doi.org/10.1007/s10812-022-01449-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01449-8

Keywords

Navigation