Skip to main content
Log in

Ultra-sensitivity refractive sensor based on graphene material at mid-infrared wavelengths

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

As a tunable and electrically adjustable 2D material, graphene opens a way for manipulating mid-infrared waves and corresponding devices. A kind of configuration of tunable diffractive grating based on mono- and multi-layer graphene material working at mid-infrared wavelengths is presented in this paper. A potential application of the diffractive grating based on graphene material is as a highly sensitive sensor for surrounding environment refractive index, and the sensitivity up to 7370 nm/RIU can be achieved, which is the highest sensitivity among refractive sensor proposed before to our best knowledge. This research paves the way toward ultra-sensitive sensor devices at mid-infrared wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.G. Williams, Filling the THz gap high power sources and applications. Rep. Prog. Phys. 69(2), 301–326 (2006)

    Article  ADS  Google Scholar 

  2. T. Masayoshi, Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    Article  Google Scholar 

  3. R. Soref, Mid-infrared photonics in silicon and germanium. Nat. Photonics 4(8), 495–497 (2010)

    Article  ADS  Google Scholar 

  4. W. Gao, J. Shu, C. Qiu, Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9), 7806–7813 (2012)

    Article  Google Scholar 

  5. H.-S. Chu, C.H. Gan, Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett. 102(23), 231107 (2013)

    Article  ADS  Google Scholar 

  6. H.G. Choon, Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett. 101(11), 111609 (2012)

    Article  ADS  Google Scholar 

  7. A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics. Nat. Photonics 6(11), 749–758 (2012)

    Article  ADS  Google Scholar 

  8. C.H. Gan, H.S. Chu, E.P. Li, Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 85(12), 125431 (2012)

    Article  ADS  Google Scholar 

  9. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7(5), 330–334 (2012)

    Article  ADS  Google Scholar 

  10. P. Liu, W. Cai, L. Wang, X. Zhang, J. Xu, Tunable terahertz optical antennas based on graphene ring structures. Appl. Phys. Lett. 100(15), 153111 (2012)

    Article  ADS  Google Scholar 

  11. Z. Li, N. Yu, Modulation of mid-infrared light using graphene-metal plasmonic antennas. Appl. Phys. Lett. 102(13), 131108 (2013)

    Article  ADS  Google Scholar 

  12. Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012)

    Article  Google Scholar 

  13. G. Yao, F. Ling, J. Yue, Q. Luo, J. Yao, Dynamically tunable graphene plasmonically induced transparency in the terahertz region. J. Lightwave Technol. (2016). https://doi.org/10.1109/JLT.2016.2586186

    Article  Google Scholar 

  14. T. Guo, L. Zhu, P.-Y. Chen, C. Argyropoulos, Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials [invited]. Op. Mater. Express 8(12), 3941–3952 (2018)

    Article  ADS  Google Scholar 

  15. H. Li, L. Wang, Z. Huang, B. Sun, X. Zhai, X. Li, Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system. EPL (Europhysics Letters) 104(3), 37001 (2013)

    Article  ADS  Google Scholar 

  16. S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, Y. Liu, Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt. Express 22(21), 26173 (2014)

    Article  ADS  Google Scholar 

  17. B. Orazbayev, M. Beruete, I. Khromova, Tunable beam steering enabled by graphene metamaterials references and links. Opt. Express 24(8), 8848–8861 (2016)

    Article  ADS  Google Scholar 

  18. Z. Wei, X. Li, J. Yin, R. Huang, Y. Liu, W. Wang, H. Liu, H. Meng, R. Liang, Active plasmonic band-stop filters based on graphene metamaterial at Thz wavelengths. Opt. Express 24(13), 14344–14351 (2016)

    Article  ADS  Google Scholar 

  19. N.J. Kumar, J. Rajan, Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing. Appl. Opt. 56(12), 3510–3517 (2017)

    Article  Google Scholar 

  20. G.W. Hanson, Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Prop. 56(3), 747–757 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Qing, H. Ma, Y. Ren, S. Yu, T. Cui, Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial. Opt. Express 24(4), 5253–5263 (2019)

    Article  ADS  Google Scholar 

  22. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)

    Article  ADS  Google Scholar 

  23. B. Huang, W. Lu, Z. Liu, S. Gao, Low-energy high-speed plasmonic enhanced modulator using graphene. Opt. Express 26(6), 7358–7367 (2018)

    Article  ADS  Google Scholar 

  24. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nat. 474(7349), 64–67 (2011)

    Article  ADS  Google Scholar 

  25. AYu. Nikitin, F. Guinea, F.J. Garcia-Vidal, L. Martin-Morenoly, Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405 (2012)

    Article  ADS  Google Scholar 

  26. A.K. Sana, K. Honzawa, Y. Amemiya, S. Yokoyama, Silicon photonic crystal resonators for label free biosensor. Jpn J Appl Phys (2016). https://doi.org/10.7567/JJAP.55.04EM11

    Article  Google Scholar 

  27. A. Fernández Gavela, D. Grajales García, J.C. Ramirez, L.M. Lechuga, Last advances in silicon-based optical biosensors. Sens. (Basel) 16(3), 285 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61975119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Jiang, C. Ultra-sensitivity refractive sensor based on graphene material at mid-infrared wavelengths. J Opt 50, 62–67 (2021). https://doi.org/10.1007/s12596-020-00662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00662-y

Navigation