Skip to main content
Log in

Ultrafast Excited-State Dynamics in Molecular Aggregates of an Indotricarbocyanine Dye

  • Published:
Journal of Applied Spectroscopy Aims and scope

The dynamics of the transient absorption spectra of H*- and J-aggregates of an indotricarbocyanine dye was studied using femtosecond pump-probe spectroscopy. Relaxation of the induced transmission of the H*-aggregates occurs with time constants of ~3 and ~30 ps with radiation pumping at λmax = 400 nm and ~30 ps with pumping at λmax = 800 nm. For J aggregates biexponential relaxation with time constants of ~1 and ~20 ps is observed in both cases. The fast component of the kinetics of transmission of the band of the H* aggregates with pumping at λmax =400 nm is due to the possibility of direct transition from the upper edge of the exciton band of the aggregate to the ground state, while the slow component is present as a result of concurrent fast transition from the upper edge of the exciton band to the lower edge and subsequent relaxation from this to the ground state. The fast component of the kinetics of transmission of the band of the J aggregates is determined by the possibility of transition from the unthermalized exciton state to the ground state, while the slow component is due to transition to the ground state after relaxation within the limits of the exciton band. The greater length of delocalization of the excitons in the J aggregates (nine molecules) compared with the H* aggregates (four molecules) appears not only as decrease of the half-width of the stationary absorption band but also as more rapid quenching of the excited states. It was shown that the H* aggregates have a narrow stationary absorption band at 514 nm and weak absorption with a maximum at 756 nm. With pumping at λmax = 800 nm there is a bathochromic shift of the maxima of the transmission band of the system as a result of the appearance of nonuniform broadening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ishchenko, Russ. Chem. Rev., 60, No. 80, 865–884 (1991).

    ADS  Google Scholar 

  2. H. Herz, Advances in Colloid and Interface Science, 8, No. 3, 237–298 (1977).

    Google Scholar 

  3. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. P. Behera, Chem. Rev., 100, No. 6, 1973–2011 (2000).

    Google Scholar 

  4. , F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, Angew. Chem. Int. Ed., 50, No. 15, 3376–23410 (2011).

    Google Scholar 

  5. E. E. Jelley, Nature, 138, No. 3502, 1009–1010 (1936).

    ADS  Google Scholar 

  6. E. E. Jelley, Nature, 139, No. 3519, 631–632 (1937).

    ADS  Google Scholar 

  7. G. Scheibe, Angew. Chem., 50, No. 11, 212–219 (1937).

    Google Scholar 

  8. S. De Boer and D. A. Wiersma, Chem. Phys. Lett., 165, No. 1, 45–53 (1990).

    ADS  Google Scholar 

  9. V. F. Kamalov, I. A. Struganova, T. Tani, and K. Yoshihara, Chem. Phys. Lett., 220, Nos. 3–5, 257–261 (1994).

    ADS  Google Scholar 

  10. I. A. Struganova, H. Lim, and S. A. Morgan, J. Phys. Chem. B, 106, No. 42, 11047–11050 (2002).

    Google Scholar 

  11. T. D. Slavnova, A. K. Chibisov, and H. Görner, J. Phys. Chem. A, 109, No. 21, 4758–4765 (2005).

    Google Scholar 

  12. H. von Berlepsch and C. Boettcher, Langmuir, 29, No. 16, 4948–4958 (2013).

    Google Scholar 

  13. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, Pure Appl. Chem., 11, Nos. 3–4, 371–392 (1965).

    Google Scholar 

  14. A. N. Jordan, S. Das, N. Siraj, S. L. de Rooy, M. Li, B. El-Zahab, L. Chandler, G. A. Baker, and I. M. Warner, Nanoscale, 4, No. 16, 5031–5038 (2012).

    ADS  Google Scholar 

  15. U. Rösch, S. Yao, R. Wortmann, and F. Würthner, Angew. Chem. Int. Ed., 45, No. 42, 7026–7030 (2006).

    Google Scholar 

  16. A. V. Ruban, P. Horton, and A. J. Young, J. Photochem. Photobiol. B: Biol., 21, Nos. 2–3, 229–234 (1993).

    Google Scholar 

  17. H. Asanuma, K. Shirasuka, T. Takarada, H. Kashida, and M. Komiyama, J. Am. Chem. Soc., 125, No. 8, 2217–2223 (2003).

    Google Scholar 

  18. N. Ryu, Y. Okazaki, E. Pouget, M. Takafuji, S. Nagaoka, H. Ihara, and R. Oda, Chem. Commun., 53, No. 63, 8870–8873 (2017).

    Google Scholar 

  19. N. V. Belko, M. P. Samtsov, G. A. Gusakov, D. S. Tarasau, A. A. Lugovski, and E. S. Voropay, J. Appl. Spectrosc., 85, No. 6, 997–1005 (2018).

    ADS  Google Scholar 

  20. V. V. Egorov, AIP Advances, 4, No. 7, 077111 (2014).

    ADS  Google Scholar 

  21. V. V. Egorov, Royal Soc. Оpen Sci., 4, No. 5, 160550 (2017).

    ADS  Google Scholar 

  22. Y. Wang, J. Opt. Soc. Am. B, 8, No. 5, 981–985 (1991).

    ADS  Google Scholar 

  23. H. Fidder, J. Knoester, and W. A. Wiersma, J. Chem. Phys., 98, No. 8, 6564–6566 (1993).

    ADS  Google Scholar 

  24. A. E. Johnson, S. Kumazaki, and K. Yoshihara, Chem. Phys. Lett., 211, No. 6, 511–515 (1993).

    ADS  Google Scholar 

  25. K. Minoshima, M. Taiji, K. Misawa, and T. Kobayashi, Chem. Phys. Lett., 218, Nos. 1–2, 67–72 (1994).

    ADS  Google Scholar 

  26. J. Moll, S. Daehne, J. R. Durrant, and D. A. Wiersma, J. Chem. Phys., 102, No. 16, 6362–6370 (1995).

    ADS  Google Scholar 

  27. R. F. Khairutdinov and N. Serpone, J. Phys. Chem. B, 101, No. 14, 2602–2610 (1997).

    Google Scholar 

  28. M. Furuki, O. Wada, L. S. Pu, Y. Sato, H. Kawashima, and T. Tani, J. Phys. Chem. B, 103, No. 36, 7607–7612 (1999).

    Google Scholar 

  29. N. V. Bel’ko, M. P. Samtsov, and A. P. Lugovskii, Zh. Bel. Gos. Univ., Fizika, No. 2, 19–26 (2020).

    Google Scholar 

  30. E. S. Voropai, M. P. Samtsov, K. N. Kaplevskii, A. E. Radk’ko, and K. A. Shevchenko, Vestn. Bel. Gos. Univ., Ser. Fizika. Matematika. Informatika, No. 3, 7–13 (2002).

    Google Scholar 

  31. A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovskii, S. A. Tikhomirov, and G. B. Tolstorozhev, A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovskii, S. A. Tikhomirov, and G. B. Tolstorozhev, J. Appl. Spectrosc., 70, 70–78 (2003).

    Google Scholar 

  32. N. A. Borisevich, O. V. Buganov, S. A. Tikhomirov, G. B. Tolstovorozhev, and G. L. Shkred, Kvant. Élektron., 28, 225–231 (1999).

    Google Scholar 

  33. M. P. Samtsov, S. A. Tikhomirov, O. V. Buganov, K. N. Kaplevsky, D. G. Melnikov, and L. S. Lyashenko, M. P. Samtsov, S. A. Tikhomirov, O. V. Buganov, K. N. Kaplevsky, D. G. Melnikov, and L. S. Lyashenko, J. Appl. Spectrosc., 76, No. 6, 783–790 (2009).

    ADS  Google Scholar 

  34. M. P. Samtsov, E. S. Voropai, K. N. Kaplevskii, and D. G. Mel’nikov, J. Appl. Spectrosc., 75, No. 5, 692–699 (2008).

    ADS  Google Scholar 

  35. W. West and S. Pearce, J. Phys. Chem., 69, No. 6, 1894–1903 (1965).

    Google Scholar 

  36. K. Misawa, S. Machida, K. Horie, and T. Kobayashi, Chem. Phys. Lett., 240, Nos. 1–3, 210–215 (1995).

    ADS  Google Scholar 

  37. T. Kobayashi and K. Misawa, J. Lumin., 72, 38–40 (1997).

    Google Scholar 

  38. L. D. Bakalis and J. Knoester, J. Lumin., 87, 66–70 (2000).

    Google Scholar 

  39. Yu. V. Malyukin, A. V. Sorokin, and V. P. Semynozhenko, Yu. V. Malyukin, A. V. Sorokin, and V. P. Semynozhenko, Low Temp. Phys., 42, No. 6, 429–440 (2016).

    ADS  Google Scholar 

  40. V. Sundström, T. Gillbro, R. A. Gadonas, and A. Piskarskas, J. Chem. Phys., 89, No. 5, 2754–2762 (1988).

    ADS  Google Scholar 

  41. I. G. Scheblykin, M. A. Drobizhev, O. P. Varnavsky, M. Van der Auweraer, and A. G. Vitukhnovsky, Chem. Phys. Lett., 261, Nos. 1–2, 181–190 (1996).

    ADS  Google Scholar 

  42. O. P. Varnavskii, M. Van der Auweraer, A. G. Vitukhnovskii, and I. G. Shcheblykin, Opt. Spektrosk., 84, 922–927 (1998) [O. P. Varnavsky, M. Van der Auweraer, A. G. Vitukhnovsky, and I. G. Scheblykin, Opt. Spectrosc., 84, 922–927 (1998)].

  43. B. Birkan, D. Gulen, and S. Ozcelik, J. Phys. Chem. B, 110, No. 22, 10805–10813 (2006).

    Google Scholar 

  44. H. von Berlepsch and C. Boettcher, J. Chem. Phys. B, 119, No. 35, 11900–11909 (2015).

    Google Scholar 

  45. N. J. Hestand, F. C. Spano, Chem. Rev., 118, No. 15, 7069–7163 (2018).

    Google Scholar 

  46. V. V. Egorov, Phys. Proc., 2, No. 2, 223–326 (2009).

    ADS  Google Scholar 

  47. I. G. Scheblykin, M. M. Bataiev, M. van der Auweraer, and A. G. Vitukhnovsky, Chem. Phys. Lett., 316, Nos. 1–2, 37–44 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Belko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 5, pp. 752–762, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belko, N.V., Samtsov, M.P., Tikhomirov, S.A. et al. Ultrafast Excited-State Dynamics in Molecular Aggregates of an Indotricarbocyanine Dye. J Appl Spectrosc 87, 830–839 (2020). https://doi.org/10.1007/s10812-020-01078-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-01078-z

Keywords

Navigation