Skip to main content
Log in

Spectral Properties of Indotricarbocyanine Dye during Self-Assembly of Its H*- and J-Aggregates

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The results of studying the self-assembly of H*- and J-aggregates of indotricarbocyanine dye in a phosphate-buffered saline are given. The formation of nonluminescent H*-aggregates with an absorption band at 516 nm and a full width at half maximum of 35 nm (1303 cm–1) is observed for the dye under study at pH 7.0, while J-aggregates are practically absent. At pH 7.4, H*-aggregates of the dye are not formed, but the self-assembly of J-aggregates with an absorption band at 777 nm and a full width at half maximum (FWHM) of 30 nm (497 cm–1) is observed; their photoluminescence quantum yield does not exceed 10–6. It was found that a change in the solution temperature from 20 to 31°C reduces the time of self-assembly of H*‑aggregates by a factor of 25. An increase in the solution temperature from 20 to 80°C leads to the decomposition of both H*- and J-aggregates; the temperature, at which the absorbance at the band maximum decreases by half, is 37°C for the bands of H*-aggregates and 32°C for the band of J-aggregates. It is shown that the absorption bands that appear in the spectral range of 400–480 nm are attributed to electronic transitions to high excited states of dye aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, Bioconjugate Chem. 4, 105 (1993). https://doi.org/10.1021/bc00020a001

    Article  Google Scholar 

  2. S. M. Mooi and B. Heyne, Langmuir 28, 16524 (2012). https://doi.org/10.1021/la3034885

    Article  Google Scholar 

  3. Z. Sheng, D. Hu, M. Xue, M. He, P. Gong, and L. Cai, Nano-Micro Lett. 5, 145 (2013). https://doi.org/10.1007/BF03353743

    Article  Google Scholar 

  4. K. Sano, T. Nakajima, T. Ali, D. W. Bartlett, A. M. Wu, I. Kim, C. H. Paik, P. L. Choyke, and H. J. Kobayashi, Biomed. Opt. 18, 103041 (2013). https://doi.org/10.1117/1.JBO.18.10.101304

    Article  Google Scholar 

  5. R. Watanabe, K. Sato, H. Hanaoka, T. Harada, T. Nakajima, I. Kim, C. H. Paik, A. M. Wu, P. L. Choyke, and H. Kobayashi, ACS Med. Chem. Lett. 5, 411 (2014). https://doi.org/10.1021/ml400533y

    Article  Google Scholar 

  6. Y. P. Istomin, E. N. Alexandrova, E. A. Zhavrid, E. S. Voropay, M. P. Samtsov, K. N. Kaplevsky, A. P. Lugovsky, and A. A. Lugovsky, Exp. Oncol. 28, 80 (2006).

    Google Scholar 

  7. A. Yuan, J. Wu, X. Tang, L. Zhao, F. Xu, and Y. Hu, J. Pharm. Sci. 102, 6 (2013). https://doi.org/10.1002/jps.23356

    Article  Google Scholar 

  8. X. Yi, F. Wang, W. Qin, X. Yang, and J. Yuan, Int. J. Nanomed. 9, 1347 (2014).

    Article  Google Scholar 

  9. A. A. Lugovski, M. P. Samtsov, K. N. Kaplevsky, D. Tarasau, E. S. Voropay, P. T. Petrov, and Yu. P. Istomin, J. Photochem. Photobiol. A 316, 31 (2016). https://doi.org/10.1016/j.jphotochem.2015.10.008

    Article  Google Scholar 

  10. M. P. Samtsov, D. S. Tarasov, A. S. Goryashchenko, N. I. Kazachkina, V. V. Zherdeva, A. P. Cavitskii, and I. G. Meerovich, Zh. Bel. Univ., Fiz., No. 1, 33 (2018).

  11. M. P. Samtsov, D. S. Tarasov, E. S. Voropai, L. S. Lyashenko, P. T. Petrov, V. M. Nasek, A. O. Savin, and R. D. Zil’berman, Zh. Bel. Univ., Fiz., No. 1, 19 (2019).

  12. F. Würthner, R. Wortmann, and K. Meerholz, ChemPhysChem. 3, 17 (2002). https://doi.org/10.1002/1439-7641(20020118)3:1<17::AID-CPHC17>3.0.CO,2-N

    Article  Google Scholar 

  13. O. I. Tolmachev, N. V. Pilipchuk, O. D. Kachkovsky, Yu. L. Slominski, V. Ya. Gayvoronsky, E. V. Shepelyavyy, S. V. Yakunin, and M. S. Brodyn, Dyes Pigments 74, 195 (2007). https://doi.org/10.1016/j.dyepig.2006.01.048

    Article  Google Scholar 

  14. S. Barlow, J. L. Bredas, Yu. A. Getmanenko, R. L. Gieseking, J. M. Hales, H. Kim, S. R. Marder, J. W. Perry, C. Risko, and Y. Zhang, Mater. Horiz. 1, 577 (2014). https://doi.org/10.1039/C4MH00068D

    Article  Google Scholar 

  15. H. Herz, Adv. Coll. Interface Sci. 8, 237 (1977). https://doi.org/10.1016/0001-8686(77)80011-0

    Article  Google Scholar 

  16. R. L. Parton and J. R. Lenhard, J. Org. Chem. 55, 49 (1990). https://doi.org/10.1021/jo00288a011

    Article  Google Scholar 

  17. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. P. Behera, Chem. Rev. 100, 1973 (2000). https://doi.org/10.1021/cr990402t

    Article  Google Scholar 

  18. A. K. Chibisov, High Energy Chem. 41, 200 (2007). https://doi.org/10.1134/S0018143907030071

    Article  Google Scholar 

  19. I. O. Shklyarevskiy, P. C. M. Christiansen, E. Aret, H. Meekes, E. Vlieg, G. Deroover, P. Callant, L. van Meervelt, and J. C. Maan, J. Phys. Chem. B 108, 16386 (2004). https://doi.org/10.1021/jp049945j

    Article  Google Scholar 

  20. D. R. Dietze and R. A. Mathies, J. Phys. Chem. C 119, 9980 (2015). https://doi.org/10.1021/acs.jpcc.5b02686

    Article  Google Scholar 

  21. A. A. Ishchenko, Russ. Chem. Rev. 60, 865 (1991). https://doi.org/10.1070/RC1991v060n08ABEH001116

    Article  ADS  Google Scholar 

  22. V. I. Yuzhakov, Russ. Chem. Rev. 61, 613 (1992). https://doi.org/10.1070/RC1992v061n06ABEH000988

    Article  ADS  Google Scholar 

  23. A. K. Chibisov, H. Görner, and T. D. Slavnova, Chem. Phys. Lett. 309, 240 (2004). https://doi.org/10.1021/jp058014k

    Article  ADS  Google Scholar 

  24. C. Didraga, A. Pugzlys, P. R. Hania, H. von Berlepsch, K. Duppen, and J. Knoester, J. Phys. Chem. B 108, 14976 (2004). https://doi.org/10.1021/jp048288s

    Article  Google Scholar 

  25. A. Pugzlys, R. Augulis, P. H. M. van Loosdrecht, C. Didraga, V. A. Malyshev, and J. Knoester, J. Phys. Chem. B 110, 20268 (2006). https://doi.org/10.1021/jp062983d

    Article  Google Scholar 

  26. H. von Berlepsch, S. Kirstein, R. Hania, A. Pugzlys, and C. Boettcher, J. Phys. Chem. B 11, 1701 (2007). https://doi.org/10.1021/jp065826n

    Article  Google Scholar 

  27. B. I. Shapiro, E. A. Belonozhkina, and V. A. Kuz’min, Nanotechnol. Russ. 4, 38 (2009). https://doi.org/10.1134/S1995078009010042

    Article  Google Scholar 

  28. F. C. Spano, J. Am. Chem. Soc. 131, 4267 (2009). https://doi.org/10.1021/ja806853v

    Article  Google Scholar 

  29. D. M. Eisele, J. Knoester, S. Kirstein, J. P. Rabe, and D. A. van den Bout, Nat. Nanotechnol. 4, 658 (2009). https://doi.org/10.1038/nnano.2009.227

    Article  ADS  Google Scholar 

  30. S. J. Khouri and V. Buss, J. Solution Chem. 39, 121 (2010). https://doi.org/10.1007/s10953-009-9476-2

    Article  Google Scholar 

  31. F. C. Spano, Acc. Chem. Res. 43, 429 (2010). https://doi.org/10.1021/ar900233v

    Article  Google Scholar 

  32. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, Angew. Chem., Int. Ed. 50, 3376 (2011). https://doi.org/10.1002/anie.201002307

    Article  Google Scholar 

  33. D. M. Eisele, C. W. Cone, E. A. Bloemsma, S. M. Vlaming, C. G. F. van der Kwaak, R. J. Silbey, M. G. Bawendi, J. Knoester, J. P. Rabe, and D. A. van den Bout, Nat. Chem. 4, 655 (2012). https://doi.org/10.1038/nchem.1380

    Article  Google Scholar 

  34. H. von Berlepsch and C. Böttcher, Langmuir 29, 4948 (2013). https://doi.org/10.1021/la400417d

    Article  Google Scholar 

  35. K. A. Clark, E. L. Krueger, and D. A. van den Bout, J. Phys. Chem. C 118, 24325 (2014). https://doi.org/10.1021/jp507791q

    Article  Google Scholar 

  36. N. Sato, T. Fujimura, T. Shimada, T. Tani, and S. Takagi, Tetrahedron Lett. 56, 2902 (2015). https://doi.org/10.1016/j.tetlet.2015.04.084

    Article  Google Scholar 

  37. J. Megow, M. I. S. Röhr, M. Schmidt am Busch, T. Renger, R. Mitric, S. Kirstein, J. P. Rabe, and V. May, Phys. Chem. Chem. Phys. 17, 6741 (2015). https://doi.org/10.1039/C4CP05945J

    Article  Google Scholar 

  38. J. R. Caram, S. Doria, D. M. Eisele, F. S. Freyria, T. S. Sinclair, P. Rebentrost, S. Lloyd, and M. G. Bawendi, Nano Lett. 16, 6808 (2016). https://doi.org/10.1021/acs.nanolett.6b02529

    Article  ADS  Google Scholar 

  39. F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, J. Phys. Chem. A 117, 6007 (2013). https://doi.org/10.1021/jp3119605

    Article  Google Scholar 

  40. H. von Berlepsch, and C. Böttcher, J. Chem. Phys. B 119, 11900 (2015). https://doi.org/10.1021/acs.jpcb.5b05576

    Article  Google Scholar 

  41. K. Takazawa, Y. Kitahama, and Y. Kimura, Chem. Commun. 20, 2272 (2004). https://doi.org/10.1039/B409690H

    Article  Google Scholar 

  42. K. Takazawa, Y. Kitahama, Y. Kimura, and G. Kido, Nano Lett. 5, 1293 (2005). https://doi.org/10.1021/nl050469y

    Article  ADS  Google Scholar 

  43. Y. Qiao, F. Polzer, H. Kirmse, E. Steeg, S. Kirstein, and J. P. Rabe, J. Mater. Chem. C 2, 9141 (2014). https://doi.org/10.1039/C4TC01724B

    Article  Google Scholar 

  44. Y. Qiao, F. Polzer, H. Kirmse, E. Steeg, S. Kühn, S. Friede, S. Kirstein, and J. P. Rabe, ACS Nano 9, 1552 (2015). https://doi.org/10.1021/nn506095g

    Article  Google Scholar 

  45. Y. Qiao, F. Polzer, H. Kirmse, S. Kirstein, and J. P. Rabe, Chem. Commun. 51, 11980 (2015). https://doi.org/10.1039/C5CC00901D

    Article  Google Scholar 

  46. M. Kawasaki and S. Aoyama, Chem. Commun. 8, 988 (2004). https://doi.org/10.1039/B400071D

    Article  Google Scholar 

  47. X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan, and H. Tian, Tetrahedron 64, 345 (2008). https://doi.org/10.1016/j.tet.2007.10.094

    Article  Google Scholar 

  48. A. N. Jordan, S. Das, N. Siraj, S. L. de Rooy, M. Li, B. El-Zahab, L. Chandler, G. A. Baker, and I. M. Warner, Nanoscale 4, 5031 (2012). https://doi.org/10.1039/C2NR30432E

    Article  ADS  Google Scholar 

  49. A. Yoshida, N. Uchida, and K. Noritsugu, Langmuir 25, 11802 (2009). https://doi.org/10.1021/la901431r

    Article  Google Scholar 

  50. K. E. Achyuthan, A. M. Achyuthan, S. M. Brozik, S. M. Dirk, T. R. Lujan, J. M. Romero, and J. C. Harper, Anal. Sci. 28, 433 (2012). https://doi.org/10.2116/analsci.28.433

    Article  Google Scholar 

  51. N. A. Toropov, P. S. Parfenov, and T. A. Vartanyan, J. Phys. Chem. C 118, 18010 (2014). https://doi.org/10.1021/jp505234j

    Article  Google Scholar 

  52. J. Moll, S. Daehne, J. R. Durrant, and D. A. Wiersma, J. Chem. Phys. 102, 6362 (1995). https://doi.org/10.1063/1.1703017

    Article  ADS  Google Scholar 

  53. B. Birkan, D. Gulen, and S. Ozcelik, J. Phys. Chem. B 110, 10805 (2006). https://doi.org/10.1021/jp0573846

    Article  Google Scholar 

  54. B. J. Walker, A. Dorn, V. Bulovic, and M. G. Bawendi, Nano Lett. 11, 2655 (2011). https://doi.org/10.1021/nl200679n

    Article  ADS  Google Scholar 

  55. H. von Berlepsch and C. Böttcher, Phys. Chem. Chem. Phys. 20, 18969 (2018). https://doi.org/10.1039/C8CP03378A

    Article  Google Scholar 

  56. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, Pure Appl. Chem. 11, 371 (1965). https://doi.org/10.1002/anie.201002307

    Article  Google Scholar 

  57. U. Rösch, S. Yao, R. Wortmann, and F. Würthner, Angew. Chem., Int. Ed. 45, 7026 (2006). https://doi.org/10.1002/anie.200602286

    Article  Google Scholar 

  58. Q. Fang, F. Wang, H. Zhao, X. Liu, R. Tu, D. Wang, and Z. Zhang, J. Phys. Chem. B 112, 2837 (2008). https://doi.org/10.1021/jp710262q

    Article  Google Scholar 

  59. N. Ryu, Y. Okazaki, E. Pouget, M. Takafuji, S. Nagaoka, H. Ihara, and R. Oda, Chem. Commun. 53, 8870 (2017). https://doi.org/10.1039/C7CC04484D

    Article  Google Scholar 

  60. A. V. Ruban, P. Horton, and A. J. Young, J. Photochem. Photobiol. B 21, 229 (1993). https://doi.org/10.1016/1011-1344(93)80188-F

    Article  Google Scholar 

  61. H. Asanuma, K. Shirasuka, T. Takarada, H. Kashida, and M. Komiyama, J. Am. Chem. Soc. 125, 2217 (2003). https://doi.org/10.1021/ja021153k

    Article  Google Scholar 

  62. V. V. Egorov, AIP Adv. 4, 077111 (2014). https://doi.org/10.1063/1.4889897

    Article  ADS  Google Scholar 

  63. V. V. Egorov, R. Soc. Open Sci. 4, 160550 (2017). https://doi.org/10.1098/rsos.160550

    Article  ADS  Google Scholar 

  64. N. V. Belko, M. P. Samtsov, G. A. Gusakov, D. S. Tarasau, A. A. Lugovski, and E. S. Voropay, J. Appl. Spectrosc. 85, 997 (2019). https://doi.org/10.1007/s10812-019-00753-0

    Article  ADS  Google Scholar 

  65. E. E. Jelley, Nature (London, U.K.) 138, 1009 (1936). https://doi.org/10.1038/1381009a0

    Article  ADS  Google Scholar 

  66. E. E. Jelley, Nature (London, U.K.) 139, 631 (1937). https://doi.org/10.1038/139631b0

    Article  ADS  Google Scholar 

  67. G. Scheibe, Angew. Chem. 50, 212 (1937). https://doi.org/10.1002/ange.19370501103

    Article  Google Scholar 

  68. S. de Boer and D. A. Wiersma, Chem. Phys. Lett. 165, 45 (1990). https://doi.org/10.1016/0009-2614(90)87010-O

    Article  ADS  Google Scholar 

  69. V. F. Kamalov, I. A. Struganova, T. Tani, and K. Yoshihara, Chem. Phys. Lett. 220, 257 (1994). https://doi.org/10.1016/0009-2614(94)00169-3

    Article  ADS  Google Scholar 

  70. I. A. Struganova, H. Lim, and S. A. Morgan, J. Phys. Chem. B 106, 11047 (2002). https://doi.org/10.1021/jp013511w

    Article  Google Scholar 

  71. G. M. Ermolaeva, V. G. Maslov, A. O. Orlova, A. S. Panfutova, N. N. Rosanov, B. D. Fainberg, T. A. Shakhverdov, and V. B. Shilov, Opt. Spectrosc. 110, 871 (2011). https://doi.org/10.1134/S0030400X11060075

    Article  ADS  Google Scholar 

  72. I. Renge and U. P. Wild, J. Phys. Chem. A 101, 7977 (1997). https://doi.org/10.1021/jp971371d

    Article  Google Scholar 

  73. I. A. Struganova, M. Hazell, J. Gaitor, D. McNally-Carr, and S. Zivanovic, J. Phys. Chem. A 107, 2650 (2003). https://doi.org/10.1021/jp0223004

    Article  Google Scholar 

  74. S. M. Mooi, S. N. Keller, and B. Heyne, Langmuir 30, 9654 (2014). https://doi.org/10.1021/la502124b

    Article  Google Scholar 

  75. M. Liu and A. Kira, Thin Solid Films 359, 104 (2000). https://doi.org/10.1016/S0040-6090(99)00728-2

    Article  ADS  Google Scholar 

  76. C. Peyratout and L. Daehne, Phys. Chem. Chem. Phys. 4, 3032 (2002). https://doi.org/10.1039/B111581B

    Article  Google Scholar 

  77. C. Peyratout, E. Donath, and L. Daehne, Photochem. Photobiol. Sci. 1, 87 (2002). https://doi.org/10.1039/B107199H

    Article  Google Scholar 

  78. K. Misawa, H. Ono, K. Minoshima, and T. Kobayashi, Appl. Phys. Lett. 63, 577 (1993). https://doi.org/10.1063/1.109954

    Article  ADS  Google Scholar 

  79. I. G. Scheblykin, L. S. Lepnev, A. G. Vitukhnovsky, and M. van der Auweraer, J. Lumin. 94, 461 (2001). https://doi.org/10.1016/S0022-2313(01)00337-4

    Article  Google Scholar 

  80. G. V. Zakharova, A. R. Kombaev, and A. K. Chibisov, High Energy Chem. 38, 180 (2004). https://doi.org/10.1023/B:HIEC.0000027656.34492.e2

    Article  Google Scholar 

  81. A. K. Chibisov, V. I. Prokhorenko, and H. Görner, Chem. Phys. 250, 47 (1999). https://doi.org/10.1016/S0301-0104(99)00245-1

    Article  Google Scholar 

  82. H. von Berlepsch, C. Böttcher, A. Ouart, M. Regenbrecht, S. Akari, U. Keiderling, H. Schnablegger, S. Dähne, and S. Kirstein, Langmuir 16, 5908 (2000). https://doi.org/10.1021/la000014i

    Article  Google Scholar 

  83. A. S. Tatikolov and S. M. Costa, Chem. Phys. Lett. 346, 233 (2001). https://doi.org/10.1016/S0009-2614(01)00969-1

    Article  ADS  Google Scholar 

  84. I. I. Khludeev, M. P. Samtsov, N. V. Bel’ko, and S. K. Dik, in Medical Electronics-2018, Medical Supplies Electronics and New Medical Technologies, Proceedings of the 11th International Conference, Minsk, Dec. 5–6, 2018 (Bel. Gos. Univ. Inform. Radioelektron, 2018), p. 215.

  85. S. Yagai, T. Seki, T. Karatsu, A. Kitamura, and F. Würthner, Angew. Chem., Int. Ed. 47, 3367 (2008). https://doi.org/10.1002/anie.200705385

    Article  Google Scholar 

  86. A. Sarbu, L. Biniek, J. M. Guenet, P. J. Mesini, and M. Brinkmann, J. Mater. Chem. C 3, 1235 (2015). https://doi.org/10.1039/C4TC02444C

    Article  Google Scholar 

  87. R. F. Khairutdinov and N. Serpone, J. Phys. Chem. B 101, 2602 (1997). https://doi.org/10.1021/jp9621134

    Article  Google Scholar 

  88. K. D. Collins, G. W. Neilson, and J. E. Enderby, Biophys. Chem. 128, 95 (2007). https://doi.org/10.1016/j.bpc.2007.03.009

    Article  Google Scholar 

  89. E. S. Voropai, M. P. Samtsov, and L. S. Lyashenko, Zh. Bel. Univ., Fiz., No. 1, 28 (2017).

  90. K. Rurack and M. Spieles, Anal. Chem. 83, 1232 (2011). https://doi.org/10.1021/ac101329h

    Article  Google Scholar 

  91. V. A. Svetlichnyi, M. P. Samtsov, O. K. Bazyl’, O. V. Smirnov, D. G. Mel’nikov, and A. P. Lugovskii, J. Appl. Spectrosc. 74 (4), 524 (2007). https://doi.org/10.1007/s10812-007-0083-y

  92. H. von Berlepsch, C. Böttcher, and L. Dähne, J. Phys. Chem. B 104, 8792 (2000). https://doi.org/10.1021/jp000085q

    Article  Google Scholar 

Download references

Funding

This work was supported by State research programs Chemical Technologies and Materials (assignment no. 5.23) and Photonics and Opto- and Microelectronics (assignment no. 1.2.10) of the Republic of Belarus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Belko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belko, N.V., Samtsov, M.P. & Lugovski, A.A. Spectral Properties of Indotricarbocyanine Dye during Self-Assembly of Its H*- and J-Aggregates. Opt. Spectrosc. 128, 1758–1767 (2020). https://doi.org/10.1134/S0030400X20110053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20110053

Keywords:

Navigation