Skip to main content
Log in

Diminution in the Optical Band Gap and Near Band Edge Emission of Nickel-Doped Zinc Oxide Thin Films Deposited by Sol-Gel Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

Thin films of nickel-doped zinc oxide (Zn1−xNixO) show redshift in the optical band gap and in the near band edge (NBE) emission of the photoluminescence spectra. The Zn1−xNixO thin films obtained by sol-gel spin coating method show narrowing of the band gap from 3.23 to 3.00 eV as the concentration of nickel is increased from x = 0.00 to x = 0.06. All the Zn1−xNixO thin films have hexagonal wurtzite structure and show a decrease of 119 meV in the NBE emission as the dopant concentration is increased. X-ray diffraction (XRD) spectroscopy confirms the formation of ZnO in the films; Fourier transform infrared (FTIR) spectroscopy reaffirms this. Energy dispersive analysis (EDX) also ascertains the presence of Ni in the films and calculates the amount of dopant present in the films. Scanning electron microscopy (SEM) shows that all the Ni-doped ZnO thin films possess granular surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009).

    Article  ADS  Google Scholar 

  2. S. C. Das, R. J. Green, J. Podder, T. Z. Regier, G. S. Chang, and A. Moewes, J. Phys. Chem. C, 117, 12745–12753 (2013).

    Article  Google Scholar 

  3. S. Mondal and P. Mitra, Indian J. Phys., 87, 125–131 (2013).

    Article  ADS  Google Scholar 

  4. J. Ramesh, G. Pasupathi, R. Mariappan, V. S. Kumar, and V. Ponnuswamy, Optik, 124, 2023–2027 (2013).

    Article  ADS  Google Scholar 

  5. M. E. Ghazi, M. Izadifard, F. E. Ghodsi, and M. Yuonesi, J. Supercond. Nov. Magn., 25, 101–108 (2012).

    Article  Google Scholar 

  6. S. Thakur, J. Kumar, J. Sharma, N. Sharma, and P. Kumar, J. Optoelectron. Adv. Mater., 15, 989–994 (2013).

    Google Scholar 

  7. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki, Appl. Phys. Lett., 79, 4139–4141 (2001).

    Article  ADS  Google Scholar 

  8. D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, J. Phys. D: Appl. Phys., 40, R387–R412 (2007).

    Article  ADS  Google Scholar 

  9. W. T. Yen, Y. C. Lin, and J. H. Ke, Appl. Surf. Sci., 257, 960–968 (2010).

    Article  ADS  Google Scholar 

  10. V. Musat, A. M. Rego, R. Monteiro, and E. Fortunato, Thin Solid Films, 516, 1512–1515 (2008).

    Article  ADS  Google Scholar 

  11. S. Dixit, A. Srivastava, R. K. Shukla, and A. Srivastava, J. Mater. Sci.-Mater. Electron., 19, 788–792 (2008).

    Article  Google Scholar 

  12. W. J. Huang, S. A. De Valle, J. B. K. Kana, K. S. Potter, and B. G. Potter Jr., Sol. Energy Mater. Sol. Cells, 137, 86–92 (2015).

    Article  Google Scholar 

  13. S. Sharma, S. Vyas, C. Periasamy, and P. Chakrabarti, Superlattices Microstruct., 75, 378–389 (2014).

    Article  ADS  Google Scholar 

  14. W. C. Shih, M. J. Wang, and I. N. Lin, Diamond Relat. Mater., 17, 390–395 (2008).

    Article  ADS  Google Scholar 

  15. S. N. F. Hasim, M. A. A. Hamid, R. Shamsudin, and A. Jalar, J. Phys. Chem. Solids, 70, 1501–1504 (2009).

    Article  ADS  Google Scholar 

  16. K. P. Misra, R. K. Shukla, A. Srivastava, and A. Srivastava, Appl. Phys. Lett., 95, 31901 (2009).

    Article  Google Scholar 

  17. P. C. Yao, S. T. Hang, Y. S. Lin, W. T. Yen, and Y. C. Lin, Appl. Surf. Sci., 257, 1441–1448 (2010).

    Article  ADS  Google Scholar 

  18. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L. K. Ono, B. Roldan Cuenya, and H. Heinrich, Appl. Surf. Sci., 256, 1895–1907 (2010).

    Article  ADS  Google Scholar 

  19. M. Gupta, V. Sharma, J. Shrivastava, A. Solanki, A. P. Singh, V. R. Satsangi, S. Dass, and R. Shrivastav, Bull. Mater. Sci., 32, 23–30 (2009).

    Article  Google Scholar 

  20. F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, J. Appl. Phys., 95, 4772–4776 (2004).

    Article  ADS  Google Scholar 

  21. D. Song, P. Widenborg, W. Chin, and A. G. Aberle, Sol. Energy Mater. Sol. Cells, 73, 1–20 (2002).

    Article  Google Scholar 

  22. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H.S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys., 98, 13505 (2005).

    Article  ADS  Google Scholar 

  23. M. Saleem, L. Fang, H. B. Ruan, F. Wu, Q. L. Huang, C. L. Xu, and C. Y. Kong, Int. J. Phys. Sci., 7, 2971–2979 (2012). (26)

    Article  Google Scholar 

  24. S. Ilican, Y. Caglar, and M. Caglar, J. Optoelectron. Adv. Mater., 10, 2578–2583 (2008).

    Google Scholar 

  25. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey (2001).

    Google Scholar 

  26. C. S. Barret and T. B. Massalski, Structure of Metals, Pergamon Press, Oxford (1980).

    Google Scholar 

  27. Y. Li, L. Xu, X. Li, X. Shen, and A. Wang, Appl. Surf. Sci., 256, 4543–4547 (2010).

    Article  ADS  Google Scholar 

  28. L. Xu, X. Li, Y. Chen, and F. Xu, Appl. Surf. Sci., 257, 4031–4037 (2011).

    Article  ADS  Google Scholar 

  29. A. J. Dekker, Solid State Physics, Macmillan India Ltd., India (2003).

    Google Scholar 

  30. A. Ghosh and R. N. P. Choudhary, J. Exp. Nanosci., 5, 134–142 (2010).

    Article  Google Scholar 

  31. A. Ghosh and R. N. P. Choudhary, Phys. Status Solidi A, 206, 535–539 (2009).

    Article  ADS  Google Scholar 

  32. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoçd, J. Appl. Phys., 98, 041301 (2005).

    Article  ADS  Google Scholar 

  33. V. A. Nikitenko, Zh. Prikl. Spektrosk., 57, 367–385 (1992) [V. A. Nikitenko, J. Appl. Spectrosc., 57, 367–385 (1992)].

  34. R. N. Gayen, K. Sarkar, S. Hussain, R. Bhar, and A.K. Pal, Indian J. Pure Appl. Phys., 49, 470–477 (2011).

    Google Scholar 

  35. X. W. Du, Y. S. Fu, J. Sun, X. Han, and J. Liu, Semicond. Sci. Technol., 21, 1202 (2006).

    Article  ADS  Google Scholar 

  36. S. L. Patil, M. A. Chougule, S. G. Pawar, S. Sen, and V. B. Patil, Soft Nanosci. Lett., 2, 46–53 (2012).

    Article  Google Scholar 

  37. T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, Cryst. Res. Technol., 45, 1154–1160 (2010).

    Article  Google Scholar 

  38. K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, C. Mauclair, Y. Ouerdane, A. Boukenter, J. Solis, and R. Stoian, Opt. Mater. Express, 3, 67–85 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Srivastava.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 6, p. 1021, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grace Masih, V., Kumar, N. & Srivastava, A. Diminution in the Optical Band Gap and Near Band Edge Emission of Nickel-Doped Zinc Oxide Thin Films Deposited by Sol-Gel Method. J Appl Spectrosc 84, 1145–1152 (2018). https://doi.org/10.1007/s10812-018-0600-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0600-1

Keywords

Navigation