Skip to main content
Log in

Quantitative Analysis of Lead in Tea Samples by Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Laser-induced breakdown spectroscopy (LIBS) is applied at natural atmosphere to compare the quantitative analysis performances of the toxic heavy metal element lead (Pb) in Pu’er tea leaves, determined by three calibration methods: the external standard method, the internal standard method, and the multiple linear regression method. The Pb I line at 405.78 nm is chosen as the analytical spectral line to perform the calibration. The linear correlation coefficients (R 2) of the predicted concentrations versus the standard reference concentrations determined by the three methods are 0.97916, 0.98462, and 0.99647, respectively. The multiple linear regression method gives the best performance with respect to average relative errors (ARE = 2.69%), maximum relative errors (MRE = 4.94%), average relative standard deviations (ARSD = 9.69%) and maximum relative standard deviations (MRSD = 24.44%) of the predicted concentrations of Pb in eight samples, compared to the other two methods. It is shown that the multiple linear regression method is more accurate and stable in predicting concentrations of Pb in Pu’er tea leaf samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Beldjilali, W. L. Yip, and J. Hermann, Anal. Bioanal. Chem., 400, No. 7, 2177–2183 (2011).

    Article  Google Scholar 

  2. S. Sankaran, R. Ehsani, and K. T. Morganc, Appl. Spectrosc., 69, No. 8, 913–919 (2015).

    Article  ADS  Google Scholar 

  3. D. K. Chauhan, D. K. Tripathi, and N. K. Rai, Food Biophys., 6, No. 3, 416–423 (2011).

    Article  Google Scholar 

  4. M. Yao, L. Huang, and J. Zheng, Opt. Laser Technol., 52, 70–74 (2013).

    Article  ADS  Google Scholar 

  5. H. Lin, M. Yao, and J. Lin, J. Appl. Spectrosc., 80, No. 6, 957–961 (2014).

    Article  ADS  Google Scholar 

  6. Xu Yuan, Yao Mingyin, and Liu Muhua, Lin Yongzeng, Laser Optoelectron. Prog., 49, No. 9 (2012).

  7. Y. Li, Y. Lu, and R. Zheng, Spectrosc. Spectr. Anal., 32, No. 3, 582–585 (2012).

    ADS  Google Scholar 

  8. M. Yao, J. Lin, and M. Liu, Appl. Opt., 51, No. 10, 1552–1557 (2012).

    Article  ADS  Google Scholar 

  9. L. Huang, M. Yao, and Y. Xu, Appl. Phys. B, 111, No. 1, 45–51 (2013).

    Article  ADS  Google Scholar 

  10. D. Zhu, J. Chen, and J. Lu, Anal. Methods, 4, No. 3, 819–823 (2012).

    Article  Google Scholar 

  11. Y. Cai, P. C. Chu, and S. K. Ho, Front. Phys., 7, No. 6, 670–678 (2012).

    Article  Google Scholar 

  12. Y. Wang, W. Liu, and Y. Song, Chem. Phys., 447, 30–35 (2015).

    Article  ADS  Google Scholar 

  13. E. Jobiliong, H. Suyanto, and A. M. Marpaung, Appl. Spectrosc., 69, No. 1, 115–123 (2015).

    Article  ADS  Google Scholar 

  14. Y. Zhang, G. Xiong, and S. Li, Combust. Flame, 160, No. 3, 725–733 (2013).

    Article  Google Scholar 

  15. Y. Yuan, S. Li, and Q. Yao, Proc. Combust. Inst., 35, No. 2, 2339–2346 (2015).

    Article  Google Scholar 

  16. Y. Zhang, S. Li, and Y. Ren, Proc. Combust. Inst., 35, No. 3, 3681–3688 (2015).

    Article  Google Scholar 

  17. Q. Q. Wang, K. Liu, and H. Zhao, Front. Phys., 7, No. 6, 701–707 (2012).

    Article  Google Scholar 

  18. T. Chen, L. Huang, and M. Yao, Appl. Opt., 54, No. 25, 7807–7812 (2015).

    Article  ADS  Google Scholar 

  19. Z. Peichao, S. Minjie, and W. Jinmei, Plasma Sci. Technol., 17, No. 8, 664–670 (2015).

    Article  Google Scholar 

  20. L. Sheng, T. Zhang, and K. Wang, Chem. Res. Chin. Univ., 31, No. 1, 107–111 (2015).

    Article  Google Scholar 

  21. M. Dong, J. Lu, and S. Yao, J. Eng. Thermophys., 33, No. 1, 175–179 (2012).

    Google Scholar 

  22. S. Palanco and J. J. Laserna, J. Anal. At. Spectrom., 15, No. 10, 1321–1327 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zheng.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 1, p. 171, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shi, M., Zheng, P. et al. Quantitative Analysis of Lead in Tea Samples by Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 84, 188–193 (2017). https://doi.org/10.1007/s10812-017-0448-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0448-9

Keywords

Navigation