Skip to main content
Log in

Investigation of plasmas produced by laser ablation using single and double pulses for food analysis demonstrated by probing potato skins

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report on investigations of plasmas produced by laser ablation of fresh potatoes using infrared nanosecond laser radiation. A twin laser system consisting of two Nd:YAG oscillators was used to generate single or double pulses of adjustable interpulse delay. The potatoes were irradiated under ambient air with moderate pulse energies of about 10 mJ. The expansion dynamics of the ablation plume was characterized using fast imaging with a gated camera. In addition, time-resolved optical emission spectroscopy was applied to study the spectral line emission of the various plasma species. The electron density was deduced from Stark broadening, and the plasma temperature was inferred from the relative emission intensities of spectral lines. The relative concentrations of metals were estimated from the comparison of the measured emission spectra to the spectral radiance computed for a plasma in local thermal equilibrium. It is shown that the plasma produced by double pulses has a larger volume and a lower density. These properties lead to an increase of the signal-to-noise ratio by a factor of 2 and thus to an improved measurement sensitivity.

Laser-induced breakdown spectroscopy for food analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. John Wiley & Sons Ltd, West Sussex

    Book  Google Scholar 

  2. Miziolek AW, Palleschi V, Schechter I (2006) Laser-induced breakdown spectroscopy (LIBS) fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Singh JP, Thakur SN (2007) Laser-induced breakdown spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  4. Beldjilali S, Borivent D, Mercadier L, Mothe E, Clair G, Hermann J (2010) Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy. Spectrochim Acta B 65:727–733

    Article  Google Scholar 

  5. Juvé V, Portelli R, Boueri M, Baudelet M, Yu J (2008) Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim Acta B 63:1047–1053

    Article  Google Scholar 

  6. Lei W, Motto-Ros V, Boueri M, Ma Q, Zhang D, Zheng L, Zeng H, Yu J (2009) Time-resolved characterization of laser-induced plasma from fresh potatoes. Spectrochim Acta B 64:891–898

    Article  Google Scholar 

  7. Assion A, Wollenhaupt M, Haag L, Mayorov F, Sarpe-Tudoran C, Winter M, Kutschera U, Baumert T (2003) Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution. Appl Phys B 77:391–397

    Article  CAS  Google Scholar 

  8. Kaiser J, Samek O, Reale L, Liska M, Malina R, Ritucci A, Poma A, Tucci A, Flora F, Lai A, Mancini L, Tromba G, Zanini F, Faenov A, Pikuz T, Cinque G (2007) Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy. Microsc Res Tech 70:147–153

    Article  CAS  Google Scholar 

  9. Trevizan LC, Santos D Jr, Samad RE, Vieira ND Jr, Nunes LC, Rufini IA, Krug FJ (2009) Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials. Spectrochim Acta B 64:369–377

    Article  Google Scholar 

  10. Martin M, Wullschleger S, Garten Jr C (2002) Laser-induced breakdown spectroscopy for environmental monitoring of soil carbon and nitrogen. In Advanced Environmental Sensing Technology II, Vo-Dinh T and Buettgenbach S, Eds., Proc. SPIE 4576:188–195

  11. Gondal MA, Nasr MM, Ahmed MM, Yamani ZH, Alsalhi MS (2011) Detection of lead in paint samples synthesized locally using-laser-induced breakdown spectroscopy. J Environ Sci Health A Tox/Hazard Subst Environ Eng 46:42–49

    Article  CAS  Google Scholar 

  12. Dockery CR, Pender JE, Goode SR (2005) Speciation of chromium via laser-induced breakdown spectroscopy of ion exchange polymer membranes. Appl Spectrosc 59:252–257

    Article  CAS  Google Scholar 

  13. Kim T, Ricchia ML, Lin C-T (2010) Analysis of copper in an aqueous solution by ion-exchange concentrator and laser-induced breakdown spectroscopy. J Chin Chem Soc 57:829–835

    CAS  Google Scholar 

  14. Doner G, Ege A (2004) Evaluation of digestion procedures for the determination of iron and zinc in biscuits by flame atomic absorption spectrometry. Anal Chem 520:217–222

    CAS  Google Scholar 

  15. Saracoglu S, Saygi KO, Uluozlu OD, Tuzen M, Soylak M (2007) Determination of trace element contents of baby foods from Turkey. Food Chem 105:280–285

    Article  CAS  Google Scholar 

  16. Tuzen M, Soylak M (2007) Evaluation of trace element contents in canned foods marketed from Turkey. Food Chem 102:1089–1095

    Article  CAS  Google Scholar 

  17. Lima EC, Barbosa F, Krug FJ (2001) Lead determination in slurries of biological materials by ETAAS using a W-Rh permanent modifier. Fresenius J Anal Chem 369:496–501

    Article  CAS  Google Scholar 

  18. Santos D, Barbosa F, Tomazelli AC, Krug FJ, Nobrega JA, Arruda MAZ (2002) Determination of Cd and Pb in food slurries by GF AAS using cryogenic grinding for sample preparation. Anal Bioanal Chem 373:183–189

    Article  CAS  Google Scholar 

  19. Kira CS, Maihara VA (2007) Determination of major and minor elements in dairy products through inductively coupled plasma optical emission spectrometry after wet, partial digestion and neutron activation analysis. Food Chem 100:390–395

    Article  CAS  Google Scholar 

  20. Chan KC, Yip YC, Chu HS (2006) High-throughput determination of seven trace elements in food samples by inductively coupled plasma-mass spectrometry. J AOAC Int 89:469–479

    CAS  Google Scholar 

  21. Sahan Y, Basoglu F, Gucer S (2007) ICP-MS analysis of a series of metals (namely: Mg, Cr, Co, Ni, Fe, Cu, Zn, Sn, Cd and Pb) in black and green olive samples from Bursa, Turkey. Food Chem 105:395–399

    Article  CAS  Google Scholar 

  22. Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl Spectrosc 53:960–964

    Article  CAS  Google Scholar 

  23. Konjević N (1999) Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications. Phys Rep 316:339–401

    Article  Google Scholar 

  24. Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E (2002) A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochim Acta B 57:339–353

    Article  Google Scholar 

  25. Hermann J (2010) System and method for the quantitative analysis of the elementary composition of matter by laser-induced plasma spectroscopy (LIBS). Patent, WO/052380

  26. Cremers DA, Radziemski LJ, Loree TR (1984) Spectrochemical analysis of liquids using the laser spark. Appl Spectrosc 38:721–729

    Article  CAS  Google Scholar 

  27. Gautier C, Fichet P, Menut D, Lacour J-L, L’Hermite D, Dubessy J (2005) Quantification of the intensity enhancements for the double-pulse laser induced breakdown spectroscopy in the orthogonal beam geometry. Spectrochim Acta B 60:265–276

    Article  Google Scholar 

  28. Babushok VI, DeLucia FC Jr, Gottfried JL, Munson CA, Miziolek AW (2006) Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim Acta B 61:999–1014

    Article  Google Scholar 

  29. De Giacomo A, Dell’Aglio M, Bruno D, Gaudiuso R, De Pascale O (2008) Experimental and theoretical comparison of single-pulse and double-pulse laser-induced breakdown spectroscopy on metallic samples. Spectrochim Acta B 63:805–816

    Article  Google Scholar 

  30. Gonzalez J, Liu C, Yoo J, Mao X, Russo RE (2005) Double pulse laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 60:27–31

    Article  Google Scholar 

  31. Mao X, Zeng X, Wen S-B, Russo RE (2005) Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon. Spectrochim Acta B 60:960–967

    Article  Google Scholar 

  32. Uebbing J, Brust J, Sdorra W, Leis F, Niemax K (1991) Reheating of a laser produced plasma by a second pulse laser. Appl Spectrosc 45:1419–1423

    Article  CAS  Google Scholar 

  33. Hohreiter V, Hahn DW (2005) Dual-pulse laser induced breakdown spectroscopy: time-resolved transmission and spectral measurements. Spectrochim Acta B 60:968–974

    Article  Google Scholar 

  34. Scaffidi J, Pender J, Pearman W, Goode SR, Colston BW Jr, Varter JC, Angel SM (2003) Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Appl Opt 42:6099–6106

    Article  Google Scholar 

  35. Stratis DN, Eland KL, Angel SM (2000) Dual-pulse LIBS using a preablation spark for enhanced ablation and emission. Appl Spectrosc 54:1270–1274

    Article  CAS  Google Scholar 

  36. Rai VN, Yueh F-Y, Singh JP (2003) Study of laser-induced breakdown emission from liquid under double-pulse excitation. Appl Opt 42:2085–2093

    Article  CAS  Google Scholar 

  37. Chan SY, Cheung NH (2000) Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy. Anal Chem 72:2087–2092

    Article  CAS  Google Scholar 

  38. Kuwako A, Uchida Y, Maeda K (2003) Supersensitive detection of sodium in water with the use of dual-pulse laser-induced breakdown spectroscopy. Appl Opt 42:6052–6056

    Article  CAS  Google Scholar 

  39. St-Onge L, Detalle V, Sabsabi M (2002) Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses. Spectrochim Acta B 57:121–135

    Article  Google Scholar 

  40. Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E (2004) Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration. Spectrochim Acta B 59:1907–1917

    Article  Google Scholar 

  41. Viskup R, Praher B, Linsmeyer T, Scherndl H, Pedarnig JD, Heitz J (2010) Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers. Spectrochim Acta B 65:935–942

    Article  Google Scholar 

  42. Hermann J, Dutouquet C (2002) Local thermal equilibrium plasma modeling for analyses of gas-phase reactions during reactive-laser ablation. J Appl Phys 91:10188–10193

    Article  CAS  Google Scholar 

  43. Aragon C, Bengoechea J, Aguilera JA (2001) Influence of the optical depth on spectral line emission from laser-induced plasmas. Spectrochim Acta Part B 56:619–628

    Article  Google Scholar 

  44. Cristoforetti G, De Giacomo A, Dell’Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N (2010) Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim Acta B 65:86–95

    Article  Google Scholar 

  45. Griem HR (1964) Plasma spectroscopy. McGraw-Hill, New York

    Google Scholar 

  46. Hermann J, Boulmer-Leborgne C, Hong D (1998) Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption. J Appl Phys 83:691–696

    Article  CAS  Google Scholar 

  47. Hermann J, Mercadier L, Mothe E, Socol G, Alloncle P (2010) On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass. Spectrochim Acta B 65:636–641

    Article  Google Scholar 

  48. Randoin L, Le Gallic P, Dupuis Y, Bernardin A (2004) Tables de composition des aliments. Editions Jacques Lanore

  49. Favier J-C, Ireland-Ripert J, Toque C, Feinberg M (1995) Répertoire général des aliments: Tables de composition. Ciqual-Regal

  50. Rivero RC, Hernández PS, Rodríguez EMR, Martín JD, Romero CD (2003) Mineral concentrations in cultivars of potatoes. Food Chem 83:247–253

    Article  CAS  Google Scholar 

  51. Di Giacomo F, Del Signore A, Giaccio M (2007) Determining the geographic origin of potatoes using mineral and trace element content. J Agric Food Chem 55:860–866

    Article  Google Scholar 

  52. Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009) Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J Exp Bot 60:697–707

    Article  CAS  Google Scholar 

  53. Mays CW, Lloyd RD (1972) Bone sarcoma risk from 90Sr. In: Goldman M, Bustad LK (eds) Biomedical implications of radiostrontium exposure: proceedings. AEC symposium series 25. U.S. Department of Energy, Washington, DC, pp 352–375

    Google Scholar 

  54. Spencer H, Laszol D, Brothers M (1957) Strontium85 and calcium45 metabolism in man. J Clin Investig 36:680–688

    Article  CAS  Google Scholar 

  55. Beattie JH, Avenell A (1992) Trace element nutrition and bone metabolism. Nutr Res Rev 5:167–188

    Article  CAS  Google Scholar 

  56. Green LC, Rush PP, Chandler CD (1957) Oscillator strengths and matrix elements for the electric dipole moment for hydrogen. Astrophys J 37(Suppl):3

    Google Scholar 

  57. Anderson EM, Zilitis VA, Sorokina ES (1967) Semiempirical calculation of the oscillator strengths of the magnesium atom. Opt Spectra 23:102

    Google Scholar 

  58. Kurucz RL, Peytremann E (1975) A table of semiempirical gf values. SAO Special Report 362

  59. Smith WH, Liszt HS (1971) Absolute oscillator strengths for some resonance multiplets of Ca I, II, Mg I, II, B I, and Al I. J Opt Soc Am 61:938

    Article  CAS  Google Scholar 

  60. Wiese WL, Smith MW, Miles BM (1969) Atomic Transition Probabilities, vol. II, U.S. Government Printing Office, Washington, DC, NSRDS-NBS 22

  61. Fuhr JR, Martin GA, Wiese WL (1988) Atomic transition probabilities-iron through nickel. J. Phys. Chem. Ref. Data 17

  62. Martin GA, Fuhr JR, Wiese WL (1988) Atomic transition probabilities-scandium through manganese. J. Phys. Chem. Ref. Data 17

  63. Wiese WL, Smith MW, Glennon BM (1966) Atomic Transition Probabilities, vol. I, U.S. Government Printing Office, Washington, D.C, NSRDS-NBS 4

  64. Garz T (1973) Absolute oscillator strengths of Si I lines between 2500 Å and 8000 Å. Astron Astrophys A&A 26:471

    CAS  Google Scholar 

  65. Bielski A (1975) A critical survey of atomic transition probabilities for Cu I (102 lines). JQSRT 15:463

    CAS  Google Scholar 

  66. Corliss CH, Bozman WR (1962) Nat Bur Stand 53:193

    Google Scholar 

  67. Miles BM, Wiese WL (1969) NBS Technical Note 474

  68. Weise WL, Kelleher DE, Paquette DR (1972) Detailed study of the stark broadening of Balmer lines in a high-density plasma. Phys Rev A 6:1132–1153

    Article  CAS  Google Scholar 

  69. Lesage A (2009) Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms. A critical review of selected data for the period 2001–2007. New Astron Rev 52:471–535

    Article  CAS  Google Scholar 

  70. Konjević N, Wiese WL (1990) Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1983 through 1988). J Phys Chem Ref Data 19:1307–1385

    Article  Google Scholar 

  71. Griem HR (1974) Spectral line broadening by plasmas. Academic, New York

    Google Scholar 

  72. Bukvić S, Djeniže S, Srećković A (1995) Measured Stark parameters of the NaI-D spectral lines in argon plasma. Publ Obs Astron Belgr 50:35–38

    Google Scholar 

  73. Konjević N, Roberts JR (1976) A critical review of the Stark widths and shifts of spectral lines from non-hydrogenic atoms. J Phys Chem Ref Data 5:209–257

    Article  Google Scholar 

  74. Konjević N, Lesage A, Fuhr JR, Wiese WL (2002) Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000). J Phys Chem Ref Data 31:919–927

    Google Scholar 

Download references

Acknowledgments

The Algerian and the French Ministers of Higher Education and Scientific Research are acknowledged for support of the present project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Beldjilali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beldjilali, S., Yip, W.L., Hermann, J. et al. Investigation of plasmas produced by laser ablation using single and double pulses for food analysis demonstrated by probing potato skins. Anal Bioanal Chem 400, 2173–2183 (2011). https://doi.org/10.1007/s00216-011-4920-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4920-8

Keywords

Navigation