Skip to main content
Log in

Spectral Fluorescence Properties of an Anionic Oxacarbocyanine Dye in Complexes with Human Serum Albumin

  • Published:
Journal of Applied Spectroscopy Aims and scope

The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Cheger, Transport Functions of Serum Albumin [in Russian], Akademiya Rumynii, Bucharest (1975).

    Google Scholar 

  2. T. Peters, Jr., All about Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, San Diego (1996).

    Google Scholar 

  3. U. Kragh-Hansen, Pharmacol. Rev., 33, 17–53 (1981).

    Google Scholar 

  4. A. S. Tatikolov, J. Photochem. Photobiol. C: Photochem. Rev., 13, 55–90 (2012).

    Article  Google Scholar 

  5. Er. J. Cheng, M. Vendrell, M. K. Tang, D. Zhai, and Y.-T. Chang, ACS Comb. Sci., 15, 452–457 (2013).

    Article  Google Scholar 

  6. A. S. Tatikolov and S. M. B. Costa, Biophys. Chem., 107, 33–49 (2004).

    Article  Google Scholar 

  7. A. S. Kashin and A. S. Tatikolov, Khim. Vysok. Énerg., 43, 536–544 (2009).

    Google Scholar 

  8. A. S. Tatikolov and I. G. Panova, Khim. Vysok. Énerg., 48, 116–122 (2014).

    Google Scholar 

  9. M. P. Samtsov, E. S. Voropay, D. G. Melnikau, L. S. Liashenka, A. A. Lugovskii, and Yu. P. Istomin, Zh. Prikl. Spektrosk., 77, No. 3, 438–444 (2010). [M. P. Samtsov, E. S. Voropay, D. G. Melnikau, L. S. Liashenka, A. A. Lugovskii, and Yu. P. Istomin, J. Appl. Spectrosc., 77, No. 3, 406–412 (2010) (English translation)].

  10. C. A. Parker and W. T. Rees, Analyst, 85, 857–600 (1960).

    Article  Google Scholar 

  11. G. G. Dyadyusha and A. A. Ishchenko, Zh. Prikl. Spektrosk., 30, No. 6, 1037–1042 (1979). [G. G. Dyadyusha and A. A. Ishchenko, J. Appl. Spectrosc., 30, No. 6, 746–749 (1979) (English translation)].

  12. A. A. Ishchenko, Structure and Spectral Luminescence Properties of Polymethine Dyes [in Russian], Naukova Dumka, Kiev (1994).

    Google Scholar 

  13. G. Scatchard, Ann. N. Y. Acad. Sci., 51, 660–672 (1948).

    Article  ADS  Google Scholar 

  14. S. D. Varfolomeev and K. G. Gurevich, Biokinetics. A Practical Course [in Russian], Fair-Press, Moscow (1999).

    Google Scholar 

  15. O. Stern and M. Volmer, Physik Zeitschr., 20, 183–188 (1919).

    Google Scholar 

  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

    Book  Google Scholar 

  17. A. V. Hill, J. Physiol., 40, IV–VII (1910).

    Google Scholar 

  18. S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher, and P. Maire, Fundam. & Clinic. Pharmacol., 22, 633–648 (2008).

    Article  Google Scholar 

  19. M. Caselli, L. Latterini, and G. Ponterini, Phys. Chem. Chem. Phys., 6, 3857–3863 (2004).

    Article  Google Scholar 

  20. A. K. Chibisov, G. V. Zakharova, and H. Gorner, Phys. Chem. Chem. Phys., 1, 1455–1460 (1999).

    Article  Google Scholar 

  21. D. Noukakis, M. Van der Auweraer, S. Toppet, and F. De Schryver, J. Phys. Chem., 99, 11860–11866 (1995).

    Article  Google Scholar 

  22. A. Kober and I. Sjöholm, Mol. Pharmacol., 18, 421–426 (1980).

    Google Scholar 

  23. T. Sakai, A. Takadate, and M. Otagiri, Biol. Pharmacol. Bull., 18, 1755–1761 (1995).

    Article  Google Scholar 

  24. G. Sudlow, D. J. Birkett, and D. N. Wade, Mol. Pharmacol., 11, 824–832 (1975).

    Google Scholar 

  25. K. Yamasaki, T. Maruyama, U. Kragh-Hansen, and M. Otagiri, Biochim. Biophys. Acta, 1295, 147–157 (1996).

    Article  Google Scholar 

  26. J. N. Miller, Proc. Anal. Div. Chem. Soc., 16, 203–208 (1979).

    Google Scholar 

  27. D. Patra and A. K. Mishra, Trend. Analyt. Chem., 21, 787–798 (2002).

    Article  Google Scholar 

  28. J. Hu, Y. Liu, W. Jiang, R. M. Zhao, and S. S. Qu, J. Photochem. Photobiol. B: Biol., 80, 235–242 (2005).

    Article  Google Scholar 

  29. W. C. Abert, W. M. Gregory, and G. S. Allan, Anal. Biochem., 213, 407–413 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Pronkin.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 3, pp. 429–435, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronkin, P.G., Tatikolov, A.S. Spectral Fluorescence Properties of an Anionic Oxacarbocyanine Dye in Complexes with Human Serum Albumin. J Appl Spectrosc 82, 438–444 (2015). https://doi.org/10.1007/s10812-015-0126-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0126-8

Keywords

Navigation