Skip to main content
Log in

Complex formation of albumin with tricarbocyanine dyes containing phosphonate groups

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The spectral characteristics, binding constants with bovine (BSA) and human serum albumin (HSA) and lifetimes of fluorescence in PBS and EtOH solutions and in the presence of BSA in PBS were measured for novel indotricarbocyanine dyes bearing remote phosphonate groups. These parameters are close to those for indocyanine green (ICG) indicating that the Coulomb interaction does not play a significant role in complex formation, and the binding is determined by the interaction of the dye polymethine chain with albumin. The fluorescence lifetimes of the complexes with BSA strongly indicate the formation of complexes of two types with different lifetimes. The complex with a longer fluorescence lifetime (740–800 ps) and major contribution (up to 88%) is bound to the more hydrophobic site and that with a shorter fluorescence lifetime (300–340 ps) to the more hydrophilic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra and G. B. Behera, Cyanines during the 1990s: A Review, Chem. Rev., 2000, 100, 1973–2011.

    Article  CAS  Google Scholar 

  2. M. Panigrahi, S. Dash, S. Patel and B. K. Mishra, Syntheses of cyanines: a review, Tetrahedron, 2012, 68, 781–805.

    Article  CAS  Google Scholar 

  3. J. Yin, Y. Kwon, D. Kim, D. Lee, G. Kim, Y. Hu, J.-H. Ryu and J. Yoon, Cyanine-Based Fluorescent Probe for Highly Selective Detection of Glutathione in Cell Cultures and Live Mouse Tissues, J. Am. Chem. Soc., 2014, 136, 5351–5358.

    Article  CAS  Google Scholar 

  4. A. Gorka, R. Nani and M. Schnermann, Cyanine polyene reactivity: scope and biomedical applications, Org. Biomol. Chem., 2015, 13, 7584–7598.

    Article  CAS  Google Scholar 

  5. H. Langhals, A. Varja, P. Laubichler, M. Kernt, K. Eibl and C. Haritoglou, Cyanine Dyes as Optical Contrast Agents for Ophthalmological Surgery, J. Med. Chem., 2011, 54, 3903–3925.

    Article  CAS  Google Scholar 

  6. V. A. Kuzmin, N. A. Durandin, E. S. Lisitsyna, L. V. Litvinkova, T. D. Nekipelova, T. A. Podrugina, E. D. Matveeva, M. V. Proskurnina and N. S. Zefirov, Energy Degradation in Photoexcited Complexes of Indocarbocyanine with Albumin, High Energy Chem., 2015, 49, 211–212.

    Article  CAS  Google Scholar 

  7. V. A. Kuzmin, N. A. Durandin, E. S. Lisitsyna, T. D. Nekipelova, T. A. Podrugina, E. D. Matveeva, M. V. Proskurnina and N. S. Zefirov, Spectral and Kinetic Characteristics of Indotricarbocyanine Complexation with Albumin, Dokl. Phys. Chem., 2015, 462P1, 107–109.

    Article  CAS  Google Scholar 

  8. G. C. Taichman, P. J. Hendry and W. J. Keon, The Use of Cardio-Green for Intraoperative Visualization of the Coronary Circulation: Evaluation of Myocardial Toxicity, Texas Heart Inst. J., 1987, 14, 133–138.

    CAS  Google Scholar 

  9. C. Ciamberlini, V. Guarnieri, G. Longobardi, P. Poggi, M. S. C. Donati and G. Panzardi, Indocyanine green videoangiography using cooled charge-coupled devices in central serous choroidopathy, J. Biomed. Opt., 1997, 2, 218–225.

    Article  CAS  Google Scholar 

  10. V. A. Kuzmin, G. V. Golovina, A. A. Kostyukov, T. D. Nekipelova, T. A. Podrugina, A. S. Kriveleva, E. D. Matveeva and M. V. Proskurnina, N. S. Zefirov, Spectral and Kinetic Parameters of Photoexcited Complexes of Albumin and Indotricarbocyanine Dye with Phosphonate Substituents, High Energy Chem., 2016, 50, 315–316, DOI: 10.7868/S0023119316040094.

    Article  CAS  Google Scholar 

  11. M. R. Mazieres, C. Duprat, J. Bellan and J. G. Wolf, Synthesis and characterisation of new phosphonate labelled cyanines, Dyes Pigm., 2007, 74, 404–409.

    Article  CAS  Google Scholar 

  12. M. N. Reddington, Synthesis and Properties of Phosphonic Acid Containing Cyanine and Squaraine Dyes for Use as Fluorescent Labels, Bioconjugate Chem., 2007, 18, 2178–2190.

    Article  CAS  Google Scholar 

  13. H. Bazin, Cyanine derivatives, fluorescent conjugates containing same and use thereof, US Patent, 0143960A1, 2010.

    Google Scholar 

  14. O. Wolfbeis, Methods for solubilising optical markers, DE Patent, WO01/36973A2, 2001.

    Google Scholar 

  15. G. Sudlow, D. J. Birkett and D. N. Wade, Spectroscopic techniques in the study of protein binding. A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol, Clin. Exp. Pharmacol. Physiol., 1975, 2, 129–140.

    Article  CAS  Google Scholar 

  16. G. Patonay, J. Kim, R. Kodagahally and L. Strekowski, Spectroscopic Study of a Novel Bis(heptamethine cyanine) Dye and Its Interaction with Human Serum Albumin, Appl. Spectrosc., 2005, 59, 682–690.

    Article  CAS  Google Scholar 

  17. D. C. Carter and J. X. Ho, Structure of serum albumin, Adv. Protein Chem., 1994, 45, 153–203.

    Article  CAS  Google Scholar 

  18. U. Kragh-Hansen, Molecular aspects of ligand binding to serum albumin, Pharma Rev., 1981, 33, 17–53.

    CAS  Google Scholar 

  19. H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler and W. Bäumler, Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions, J. Photochem. Photobiol., A, 1999, 128, 101–109.

    Article  CAS  Google Scholar 

  20. X. Yang, C. Shi, R. Tong, W. Qian and E. Haiyen, Near IR Heptamethine Cyanine Dye-Mediated Cancer Imaging, Clin. Cancer Res., 2010, 16, 2833–2844.

    Article  CAS  Google Scholar 

  21. D. Phillips, Chemical mechanisms in photodynamic therapy with phthalocyanines, Prog. React. Kinet., 1997, 22, 175–300.

    CAS  Google Scholar 

  22. M. Y. Berezin, H. Lee, W. Akers, G. Nikiforovich and S. Achilefu, Ratiometric Analysis of Fluorescence Lifetime for Probing Binding Sites in Albumin with Near-Infrared Fluorescent Molecular Probes, Photochem. Photobiol., 2007, 83, 1371–1378.

    Article  CAS  Google Scholar 

  23. O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem., 2010, 312, 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. SYBYL-X 2.1, Certara L.P., St. Louis, Mo., 2013.

  25. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, UCSF Chimera–a visualization system for exploratory research and analysis, J. Comput. Chem., 2004, 2513, 1605–1612.

    Article  CAS  Google Scholar 

  26. D. S. Pisoni, L. Todeschini, A. C. A. Borges, C. L. Petzhold, F. S. Rodembusch and L. F. Campo, Symmetrical and Asymmetrical Cyanine Dyes. Synthesis, Spectral Properties, and BSA Association Study, J. Org. Chem., 2014, 79, 5511–5520.

    Article  CAS  Google Scholar 

  27. M. Y. Berezin, K. Guo, W. Akers, J. Livingston, M. Solomon, H. Lee, K. Liang, A. Agee and S. Achilefu, Rational Approach to Select Small Peptide Molecular Probes Labeled with Fluorescent Cyanine Dyes for in Vivo Optical Imaging, Biochemistry, 2011, 50, 2691–2700.

    Article  CAS  Google Scholar 

  28. H. Cao, Y. Xiong, T. Wang, B. Chen, T. C. Squier and M. U. Mayer, A Red Cy3-Based Biarsenical Fluorescent Probe Targeted to a Complementary Binding Peptide, J. Am. Chem. Soc., 2007, 129, 8672–8673.

    Article  CAS  Google Scholar 

  29. N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan and F. Bussolino, A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence, Dyes Pigm., 2009, 80, 307–313.

    Article  CAS  Google Scholar 

  30. H. J. Weder and M. H. Bickel, Interactions of Drugs with Proteins: Experimental Methods, Treatment of Experimental Data, and Thermodynamics of Binding Reactions of Thymoleptic Drugs and Model Dyes, J. Pharm. Sci., 1970, 59, 1563–1569.

    Article  CAS  Google Scholar 

  31. L. Birla, A. M. Cristian and M. Hillebrand, Absorption and steady state fluorescence study of interaction between eosin and bovine serum albumin, Spectrochim. Acta, Part A, 2004, 60, 551–556.

    Article  Google Scholar 

  32. S. Kishore and M. Maruthamuthu, Binding of rose bengal onto bovine serum albumin, Proc. Indian Acad. Sci. (Chem. Sci.), 1993, 105, 279–285.

    CAS  Google Scholar 

  33. S. M. T. Shaikh, J. Seetharamappa, P. B. Kandagal, D. H. Manjunatha and S. Ashoka, A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods, Dyes Pigm., 2007, 74, 665–671.

    Article  CAS  Google Scholar 

  34. Y. Hu, Y. Liu, R. Zhao, J. Dong and S. Qu, Spectroscopic studies on the interaction between methylene blue and bovine serum albumin, J. Photochem. Photobiol., A, 2006, 179, 324–329.

    Article  CAS  Google Scholar 

  35. F. Lu, J. H. Pan, Y. Liu, H. Zhang, Y. Guo and Y. Wang, Study on the interaction of bovine serum albumin with acid cyanine 5R and its application in analysis, Biochem. Cell Biol., 2006, 84, 1–8.

    Article  CAS  Google Scholar 

  36. L. Shang, X. Jiang and S. Dong, In vitro study on the binding of neutral red to bovine serum albumin by molecular spectroscopy, J. Photochem. Photobiol., A, 2006, 184, 93–97.

    Article  CAS  Google Scholar 

  37. B. Ojha and G. Das, Environment-sensitive amphiphilic fluorophore for selective sensing of protein, Photochem. Photobiol. Sci., 2011, 10, 554–560.

    Article  CAS  Google Scholar 

  38. M. Mathew, S. Sreedhanya, P. Manoj, C. T. Aravindakumar and U. K. Aravind, Exploring the Interaction of Bisphenol-S with Serum Albumins: A Better or Worse Alternative for Bisphenol A?, J. Phys. Chem. B, 2014, 118, 3832–3843.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana D. Nekipelova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, V.A., Nekipelova, T.D., Podrugina, T.A. et al. Complex formation of albumin with tricarbocyanine dyes containing phosphonate groups. Photochem Photobiol Sci 15, 1377–1384 (2016). https://doi.org/10.1039/c6pp00246c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00246c

Navigation