Skip to main content
Log in

Influence of Chemical Composition Heterogeneity on the Spectral Position of the Fundamental Absorption Edge of Cu(In, Ga)Se2 Solid Solutions

  • Published:
Journal of Applied Spectroscopy Aims and scope

Optical parameters of Cu(In,Ga)Se2 (CIGS) thin films were determined by measuring optical transmission and reflectance spectra at room temperature. CIGS thin films with average Ga/(Ga + In) ratio ~0.45 were deposited on glass substrates using a three-stage process. The films had thickness d ~ 1.6 μm and refractive index n ~ 2.38–2.53 in the transparency range. The band-gap energy Eg of the CIGS thin films was ~1.36 eV at 293 K. The influence of chemical composition heterogeneity along the depth of the absorbing layers on the spectral position of the fundamental absorption edge of the CIGS solid solutions was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Contreras, L. M. Mansfield, B. Egaas, J. Ji, M. Romero, R. Noufi , E. Rudiger-Voigt, and W. Mannstadt, Prog. Photovoltaics, 20, 843–850 (2012).

    Article  Google Scholar 

  2. C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, and E. S. Aydil, J. Vac. Sci. Technol., A, 29, 030801-1–030801-16 (2011).

    Article  Google Scholar 

  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovoltaics, 19, 894–897 (2011).

    Article  Google Scholar 

  4. I. Repins, M. A. Contreras, B. Egaas, C. De Hart, J. Scharf, C. L. Perkins, B. To, and R. Noufi , Prog. Photovoltaics, 16, 235–239 (2008).

    Article  Google Scholar 

  5. P. Jackson, R. Wuerz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G. Bilger, and J. H. Werner, Prog. Photovoltaics, 15, 507–519 (2007).

    Article  Google Scholar 

  6. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics, 21, 1–11 (2013).

    Article  Google Scholar 

  7. A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi , and A. M. Hermann, Appl. Phys. Lett., 65, 198–200 (1994).

    Article  ADS  Google Scholar 

  8. A. Nagaoko, K. Yoshino, T. Taniyama, and H. Miyake, Jpn. J. Appl. Phys., 50, 05FB04-1–05FB04-2 (2011).

    Google Scholar 

  9. H. M. Rietveld, J. Appl. Crystallogr., 2, 65–71 (1969).

    Article  Google Scholar 

  10. A. V. Mudryi, V. F. Gremenok, A. V. Korotkii, V. B. Zalesskii, M. V. Yakushev, F. Luckert, and R. Martin, Zh. Prikl. Spektrosk., 77, No. 3, 400–406 (2010).

    Google Scholar 

  11. T. Tinoco, C. Rincon, M. Quintero, and G. S. Perez, Phys. Status Solidi A, 124, No. 2, 427–434 (1991).

    Article  ADS  Google Scholar 

  12. B. Grezeta-Plenkovic, S. Popovic, B. Celustka, and B. Santik, J. Appl. Crystallogr., 13, 311–315 (1980).

    Article  Google Scholar 

  13. E. J. Friedrich, R. Fernandez-Ruiz, J. M. Merino, and M. Leon, Powder Diffr., 25, 253–257 (2010).

    Article  ADS  Google Scholar 

  14. A. V. Mudryi, V. F. Gremenok, A. V. Ivanyukovich, M. V. Yakushev, and Ya. V. Feofanov, Zh. Prikl. Spektrosk., 72, No. 6, 805–808 (2005).

    Google Scholar 

  15. A. V. Korotkii, A. V. Mudryi, M. V. Yakushev, F. Luckert, and R. Martin, Zh. Prikl. Spektrosk., 77, No. 5, 725–731 (2010).

    Google Scholar 

  16. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi , J. Ward, and A. Duda, Prog. Photovoltaics, 11, 225–230 (2003).

    Article  Google Scholar 

  17. R. Swanepoel, J. Phys. E: Sci. Instrum., 16, 1214–1222 (1983).

    Article  ADS  Google Scholar 

  18. A. B. Djurisic and E. H. Li, Appl. Phys. A: Mater. Sci. Process., 73, 189–192 (2001).

    Article  ADS  Google Scholar 

  19. M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, Phys. Rev. B: Condens. Matter Mater. Phys., 63, 075203-1–075203-13 (2001).

    ADS  Google Scholar 

  20. M. I. Alonso, M. Garriga, C. A. Durante Rincon, E. Hernandez, and M. Leon, Appl. Phys. A: Mater. Sci. Process., 74, 659–664 (2002).

    Article  ADS  Google Scholar 

  21. H. Neumann, W. Horig, P. A. Jones, G. Lippold, H. Sobotta, R. D. Tomlinson, and M. Y. Yakushev, Cryst. Res. Technol., 29, 719–726 (1994).

    Article  Google Scholar 

  22. J. I. Pankove, Optical Processes in Semiconductors, Englewood Cliffs, New Jersey (1971).

    Google Scholar 

  23. C. A. Durante Rincon, E. Hernandez, M. I. Alonso, M. Garriga, S. M. Wasim, C. Rincon, and M. Leon, Mater. Chem. Phys., 70, 300–304 (2001).

    Article  Google Scholar 

  24. S. Minoura, K. Kodera, T. Maekawa, K. Miyazaki, S. Niki, and H. Fujiwara, J. Appl. Phys., 113, 063505-1–063505-14 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mudryi.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii Vol. 81 No. 3 pp. 383–390 May–June 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refahati, N., Mudryi, A.V., Zhivulko, V.D. et al. Influence of Chemical Composition Heterogeneity on the Spectral Position of the Fundamental Absorption Edge of Cu(In, Ga)Se2 Solid Solutions. J Appl Spectrosc 81, 404–410 (2014). https://doi.org/10.1007/s10812-014-9945-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9945-2

Keywords

Navigation