Skip to main content
Log in

Mathematical Modelling of Dynamic Quenching of Dual-Band Fluorescence Pulses of Molecules with Intramolecular Hydrogen Bonds

  • Published:
Journal of Applied Spectroscopy Aims and scope

Dynamic quenching of the intensity of dual-band fluorescence pulses is modelled using numerical solutions of the equations for the population matrix of a model molecule with five states. The state with the highest energy is assumed to be resonantly excited by light and two other excited states that are populated by subsequent relaxation processes are assumed to be the initial states for molecular transitions with emission of dual-band fluorescence photons. The model parameters for the molecule are chosen to match the typical parameters of molecules with intramolecular proton phototransfer. Quenching is treated as a consequence of nonradiative decay of the excited states of the fluorescing molecule owing to collisions with quenchant molecules. Examples of different dual-band fl uorescence quenching mechanisms for the model molecule are given, depending on the decay of particular excited states of the molecule involving nonradiative intramolecular transitions or transitions into states of the quenchant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Demchenko, A. S. Klymchenko, V. G. Pivovarenko, S. Ercelen, G. Duportail, and Yv. Mely, J. Fluores., 13, 291–294 (2003).

    Article  Google Scholar 

  2. V. I. Tomin, S. Oncul, G. Smolarczyk, and A. P. Demchenko, Chem. Phys., 342, 126–134 (2007).

    Article  ADS  Google Scholar 

  3. B. M. Uzhinov and M. N. Khimich, Usp. Khim., 80, 580–604 (2011).

    Google Scholar 

  4. A. P. Demchenko, Anal. Biochem., 343, 1–22 (2005).

    Article  Google Scholar 

  5. J. Lakowicz, Principles of Fluorescent Spectroscopy, 3rd edn., Springer (2006).

  6. V. I. Tomin, Opt. Spektrosk., 104, 793–800 (2008).

    Google Scholar 

  7. V. I. Tomin, Khim. Fizika, 28, 10–17 (2009).

    Google Scholar 

  8. V. I. Tomin, Opt. Spektrosk., 113, 44–55 (2012).

    ADS  Google Scholar 

  9. J. Zhao, S. Ji, Y. Chen, H. Guo, and P. Yang, Phys. Chem. Chem. Phys., 14, 8803–8817 (2012).

    Article  Google Scholar 

  10. V. A. Morozov, Opt. Spektrosk., 105, 195–202 (2008).

    Article  Google Scholar 

  11. V. A. Morozov, Opt. Spektrosk., 106, 899–904 (2009).

    Article  Google Scholar 

  12. S. I. Vavilov, Microstructure of Light [in Russian], Izd-vo AN SSSR, Moscow (1950).

    Google Scholar 

  13. V. A. Morozov and P. P. Shorygin, Opt. Spektrosk., 63, 1235–1242 (1987).

    Google Scholar 

  14. V. P. Krainov and B. M. Smirnov, Radiative Processes in Atomic Physics [in Russian], Vysshaya Shkola, Moscow (1983).

    Google Scholar 

  15. V. I. Tomin and G. Smolyarchik, Opt. Spektrosk., 104, 919–925 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Morozov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 2, pp. 233–238, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, V.A., Dubina, Y.M., Chuvulkin, N.D. et al. Mathematical Modelling of Dynamic Quenching of Dual-Band Fluorescence Pulses of Molecules with Intramolecular Hydrogen Bonds. J Appl Spectrosc 81, 226–231 (2014). https://doi.org/10.1007/s10812-014-9914-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9914-9

Keywords

Navigation