Skip to main content
Log in

Dynamics of the Optical Characteristics of Erosion Laser Flares of Metals Formed by Intense Nanosecond Laser Pulses Under Atmospheric Conditions

  • Published:
Journal of Applied Spectroscopy Aims and scope

Time resolved laser induced plasma spectroscopy is used to study the erosion laser flares of a number of metals (Ni, Pb, Zn) exposed to intense 20-ns Nd:YAG laser pulses in air at atmospheric pressure (λ = 1064 nm, 0.1 ≤ q ≤ 3 GW/cm2). The time variation of the emission from the laser induced plasma is studied. Characteristic lines of the elements are found in the laser flares and the formation of the spectral structure of the erosion laser flares under these conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Rykalin, A. A. Uglov, and A. N. Kokora, Laser Processing of Materials [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  2. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, The Effect of High-Power Laser Radiation on Metals [in Russian], Nauka, Moscow (1970).

  3. Yu. P. Raizer, The Effect of Laser Radiation [in Russian], Mir, Moscow (1974).

    Google Scholar 

  4. L. I. Mirkin, Physical Basis of Materials Processing with Laser Beams [in Russian], Izd. Mosk. Univ., Moscow (1975).

    Google Scholar 

  5. A. M. Prokhorov, V. I. Konov, I. Ursu, and I. N. Miheilescu, The Interaction of Laser Radiation with Metals [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  6. J. Singh and S. Thakur, Laser-Induced Breakdown Spectroscopy, Elsevier, Amsterdam (2007).

    Google Scholar 

  7. N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, Appl. Phys. B, 86, 605–614 (2007).

    Article  ADS  Google Scholar 

  8. W. Demtröder, Laser Spectroscopy, Vol. 2, Experimental Techniques, Springer, Berlin, Heidelberg (2008).

  9. V. K. Goncharov, K. V. Kozadaev, M. V. Puzyrev, and V. M. Stetsik, J. Eng. Phys. Thermophys., 82, 630–634 (2009).

    Article  Google Scholar 

  10. V. K. Goncharov, K. V. Kozadaev, D. V. Shchegrikovich, J. Eng. Phys. Thermophys., 84, 781–786 (2011).

    Article  Google Scholar 

  11. M. D. Aksenenko and M. L. Baranochnikov, Optical Radiation Detectors [in Russian], Radio i Svyaz′, Moscow (1987).

    Google Scholar 

  12. I. K. Kikoin, Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  13. V. K. Goncharov, K. V. Kozadaev, and M. V. Puzyrev, in: M. Sosa and J. Franco (Eds.), Engineering Physics and Mechanics: Analyses, Prediction and Applications, ISBN: 978-1-60876-227-9 (2010), pp. 441–471

  14. S. I. Anisimov and B. S. Luk′yanchuk, Usp. Fiz. Nauk, 172, No. 3, 301–333 (2002).

  15. T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danelius, A. Piskarkas, G. Tamosauskas, and F. Dausinger, Kvant. Élektron., 28, No. 2, 167–172 (1999).

    Google Scholar 

  16. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Zh. Prikl. Spektrosk., 77, No. 4, 604–611 (2010).

    Google Scholar 

  17. V. K. Goncharov and K. V. Kozadaev, J. Eng. Phys. Thermophys., 83, No. 1, 90–95 (2010).

    Article  Google Scholar 

  18. K. V. Kozadaev, Perspektivnye Materialy, 6, 71–78 (2011).

    Google Scholar 

  19. F. V. Bunkin, A. E. Kazakov, and M. V. Fedorov, Usp. Fiz. Nauk, 107, No. 4, 559–593 (1972).

    Article  Google Scholar 

  20. A. K. Shuaibov, M. P. Chuchman, and L. L. Shimon, Tech. Phys. Lett., 30, No. 24, 49–55 (2004).

    Google Scholar 

  21. M. P. Chuchman and A. K. Shuaibov, Plasma Phys. Rep., 34, No. 4, 340–346 (2008).

    Article  Google Scholar 

  22. V. K. Unnikrishnan, A. Kamlesh, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Pramana — J. Рhys., 74, No. 6, 983–993 (2010).

    Google Scholar 

  23. M. Kubkowska, P. Gasior, M. Rosinski, J. Wolowski, M. J. Sadowski, K. Malinowski, and E. Skladnik-Sadowska, Eur. Phys. D, 54, 463–466 (2009).

    Article  ADS  Google Scholar 

  24. V. S. Burakov, A. V. Butsen′, and N. V. Tarasenko, Zh. Prikl. Spektrosk., 77, No. 3, 416–424 (2010).

  25. H. Griem, Plasma Spectroscopy [Russian translation], Atomizdat, Moscow (1969).

    Google Scholar 

  26. V. N. Kolesnikov, Spectroscopic Diagnostics of Plasmas [in Russian], MIFI, Moscow (2007).

    Google Scholar 

  27. N. Kumar, S. Dash, A. K. Tyagi, and R. Baldev, Sadhana, 35, No. 4, 493–511 (2010).

    Article  MATH  Google Scholar 

  28. A. N. Zaidel′, V. K. Prokof′ev, and S. M. Raiskii, Tables of Spectrum Lines [in Russian], Izd. Tekh.-Teoret. Lit, Moscow (1952).

  29. C. Corliss and W. Bozeman, Transition Probabilities and Oscillator Strengths for 70 Elements [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  30. J. E. Sansonetti and W. C. Martin, J. Phys. Chem. Ref. Data, 34, No. 4, 1559–2259 (2005).

    Article  ADS  Google Scholar 

  31. T. Sukhov, Laser Spectral Analysis [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kozadaev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 80, No. 3, pp. 409–416, May–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, V.K., Kozadaev, K.V. & Shchegrikovich, D.V. Dynamics of the Optical Characteristics of Erosion Laser Flares of Metals Formed by Intense Nanosecond Laser Pulses Under Atmospheric Conditions. J Appl Spectrosc 80, 395–402 (2013). https://doi.org/10.1007/s10812-013-9780-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-013-9780-x

Keywords

Navigation