Skip to main content

Advertisement

Log in

pH treatments in continuous cultivation to maximize microalgal production and nutrient removal from anaerobic digestion effluent of aquatic macrophytes

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Green algae have great potential for removing inorganic nutrients from anaerobic digestion effluent (ADE), but there is insufficient available magnesium (Mg) in the ADE from aquatic macrophytes for effective algal growth. In this study, we determined suitable pH and hydraulic retention time (HRT) for maximizing growth of the alga Chlorella sorokiniana and nutrient removal efficiency with a flow-through continuous cultivation system. This used ADE from aquatic macrophytes, adjusted to pH 5.0, 6.0, 6.5 and 7.0 at two HRTs of 6 and 8 days. The highest C. sorokiniana biomass concentration was obtained in the pH 6.5 treatment, being 0.50 and 0.67 g L−1 at 6 and 8 days of HRT, respectively, without Mg enrichment. Both were equivalent to 83.6 mg L−1 day−1 of biomass productivity. Removal rates of both ammonium nitrogen and phosphate phosphorus were almost 100% in pH 6.5 and 7.0 treatments and declined to below 60% in pH 5.0 and 6.0 treatments during the study period. The results demonstrated that a source medium pH of 6.5 using a continuous cultivation system (irrespective of the two HRTs), and increasing available Mg, was suitable for maximizing C. sorokiniana biomass productivity and nutrient removal from the ADE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all data and materials support published claims and comply with field standards.

References

  • Abbasi SA, Nipaney PC (1986) Infestation by aquatic weeds of the fern genus Salvinia: its status and control. Environ Conserv 13:235–241

    Google Scholar 

  • Abbasi SA, Nipaney PC, Schaumberg GD (1990) Bioenergy potential of eight common aquatic weeds. Biol Wastes 34:359–366

    CAS  Google Scholar 

  • Armstrong FAJ, Stearns CR, Strickland JDH (1967) The measurement of upwelling and subsequent biological process by means of the Technicon Autoanalyzer® and associated equipment. Deep Sea Res Oceanogr Abstr 14:381–389

    CAS  Google Scholar 

  • Ayre JM, Moheimani NR, Borowitzka MA (2017) Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res 24:218–226

  • Ban S, Toda T, Koyama M, Ishikawa K, Kohzu A, Imai A (2019) Modern lake ecosystem management by sustainable harvesting and effective utilization of aquatic macrophytes. Limnology 20:93–100

    Google Scholar 

  • Borggaard OK, Raben-Lange B, Gimsing AL, Strobel BW (2005) Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127:270–279

    CAS  Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–226.

  • Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C 146:60–78

    Google Scholar 

  • Charudattan R (2010) A reflection on my research in weed biological control: using what we have learned for future applications. Weed Technol 24:208-217.

  • Choi O, Das A, Yu CP, Hu Z (2010) Nitrifying bacterial growth inhibition in the presence of algae and cyanobacteria. Biotechnol Bioeng 107:1004–1011

    CAS  PubMed  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Coleman JR, Colman B (1981) Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH. Plant Physiol 67:917–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collos Y, Harrison PJ (2014) Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull 80:8–23

    CAS  PubMed  Google Scholar 

  • Escudero A, Blanco F, Lacalle A, Pinto M (2014) Ammonium removal from anaerobically treated effluent by Chlamydomonas acidophila. Bioresour Technol 153:62–68

    CAS  PubMed  Google Scholar 

  • Fernandes BD, Mota A, Teixeira JA, Vicente AA (2015) Continuous cultivation of photosynthetic microorganisms: approaches, applications and future trends. Biotechnol Adv 33:1228–1245

    CAS  PubMed  Google Scholar 

  • Finkle BJ, Appleman D (1953) The effect of magnesium concentration on growth of Chlorella. Plant Physiol 28:664–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frigon JC, Matteau-Lebrun F, Abdou RH, McGinn PJ, O’Leary SJB, Guiot SR (2013) Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl Energy 108:100–107

    CAS  Google Scholar 

  • Guaya D, Valderrama C, Farran A, Armijos C, Cortina JL (2015) Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem Eng J 271:204–213

    CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    CAS  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467

    CAS  Google Scholar 

  • Hata N, Liu X, Taguchi K, Kanemoto R, Yoshida G, Seyama T, Toda T, Ban S (2019) Is anaerobic digestive effluent of excessive growing submerged macrophyte in the southern basin of Lake Biwa applicable for nutrients in hydroponics? J Water Environ Issues 32:65–74 (in Japanese)

    Google Scholar 

  • Healey FP (1973) Inorganic nutrient uptake and deficiency in algae. Crit Rev Microbiol 3:69–113

    CAS  Google Scholar 

  • Holman BWB, Malau-Aduli AEO (2013) Spirulina as a livestock supplement and animal feed. J Anim Physiol Anim Nutr 97:615–623

    CAS  Google Scholar 

  • Hussner A, Stiers I, Verhofstad MJJM, Bakker ES, Grutters BMC, Haury J, Van Valkenburg JLCH, Brundu G, Newman J, Clayton JS, Anderson LWJ, Hofstra D (2017) Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat Bot 136:112–137

    Google Scholar 

  • Ji F, Liu Y, Hao R, Li G, Zhou Y, Dong R (2014) Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresour Technol 161:200–207

  • Kasiri S, Ulrich A, Prasad V (2015) Optimization of CO2 fixation by Chlorella kessleri cultivated in a closed raceway photo-bioreactor. Bioresour Technol 194:144–155

  • Kim S, Park J, Cho YB, Hwang SJ (2013) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol 144:8–13

    CAS  PubMed  Google Scholar 

  • Kim J, Lee JY, Lu T (2014) Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochem Eng J 82:34–40

    CAS  Google Scholar 

  • Kimura S, Yamada T, Ban S, Koyama M, Toda T (2019) Nutrient removal from anaerobic digestion effluents of aquatic macrophytes with the green alga, Chlorella sorokiniana. Biochem Eng J 142:170–177

    CAS  Google Scholar 

  • Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386

  • Kobayashi T, Wu Y, Lu Z, Xu K (2015) Characterization of anaerobic digestibility and kinetics of harvested submerged aquatic weeds used for nutrient phytoremediation. Energies 8:304–318

    CAS  Google Scholar 

  • Koroleff F (1969) Direct determination of ammonia in natural waters as indophenol blue. Information on techniques and methods for seawater analysis. Interlab Rep, International Council for the Exploration of the Sea, Denmark, pp 19-22

  • Koyama M, Yamamoto S, Ishikawa K, Ban S, Toda T (2014) Anaerobic digestion of submerged macrophytes: chemical composition and anaerobic digestibility. Ecol Eng 69:304–309

    Google Scholar 

  • Kumar K, Das D (2012) Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour Technol 116:307–313

    CAS  PubMed  Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae - a literature review. Vatten 62:31–38

    CAS  Google Scholar 

  • Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA (2009) Phosphorus recovery from wastewater by struvite crystallization: a review. Crit Rev Environ Sci Technol 39:433–477

    Google Scholar 

  • Li T, Dong BZ, Liu Z, Chu WH (2011) Characteristic of algogenic organic matter and its effect on UF membrane fouling. Water Sci Technol 64:1685–1691

    CAS  PubMed  Google Scholar 

  • Li M, Liu J, Xu Y, Qian G (2016) Phosphate adsorption on metal oxides and metal hydroxides: a comparative review. Environ Rev 24:319–332

    CAS  Google Scholar 

  • Li G, Bai X, Li H, Lu Z, Zhou Y, Wang Y, Cao J, Huang Z (2019) Nutrients removal and biomass production from anaerobic digested effluent by microalgae: a review. Int J Agric Biol Eng 12:8-13.

  • Liu X, Fujiwara M, Kodera T, Watanabe K, Akizuki S, Kishi M, Koyama M, Toda T, Ban S (2020) Conditions for continuous cultivation of Chlorella sorokiniana and nutrient removal from anaerobic digestion effluent of aquatic macrophytes. Int Biodeterior Biodegrad 149. https://doi.org/10.1016/j.ibiod.2020.104923

  • Masojidek J, Koblizek M, Torzillo G (2004) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 20–39.

  • Massa M, Buono S, Langellotti AL, Castaldo L, Martello A, Paduano A, Sacchi R, Fogliano V (2017) Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima. Nat Biotechnol 36:8–16

    CAS  Google Scholar 

  • Miller AG, Colman B (1980) Evidence for HCO3- transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella spp. (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398

    CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Google Scholar 

  • Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biotechnol 90:1399–1407

    CAS  PubMed  Google Scholar 

  • Molloy LF, Richards EL (1971) Complexing of calcium and magnesium by the organic constituents of Yorkshire Fog (Holcus lanatus) II.* - Complexing of Ca2+ and Mg2+ by cell wall fractions and organic acids. J Sci Food Agric 22:397–402

    CAS  Google Scholar 

  • Moutin T, Gal JY, El Halouani H, Picot B, Bontoux J (1992) Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate: theoretical and experimental results. Water Res 26:1445–1450

    CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  • Nelson NO, Mikkelsen RL, Hesterberg DL (2003) Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. Bioresour Technol 89:229–236

    CAS  PubMed  Google Scholar 

  • Nguyen ML, Westerhoff P, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M (2005) Characteristics and reactivity of algae-produced dissolved organic carbon. J Environ Eng 131:1574–1582

    CAS  Google Scholar 

  • Nwoba EG, Mickan BS, Moheimani NR (2019) Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. J Appl Phycol 31:3545–3556

    CAS  Google Scholar 

  • Oh-Hama T, Miyachi S (1988) Chlorella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 3–26

    Google Scholar 

  • Ortiz Montoya EY, Casazza AA, Aliakbarian B, Perego P, Converti A, De Carvalho JCM (2014) Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Biotechnol Prog 30:916–922

    CAS  PubMed  Google Scholar 

  • Park J, Jin HF, Lim BR, Park KY, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101:8649–8657

    CAS  PubMed  Google Scholar 

  • Patel BN, Merrett MJ (1986) Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta 169:81–86

    CAS  PubMed  Google Scholar 

  • Ramos Tercero EA, Sforza E, Morandini M, Bertucco A (2014) Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal. Appl Biochem Biotechnol 172:1470–1485

    CAS  PubMed  Google Scholar 

  • Ruiz J, Álvarez-Díaz PD, Arbib Z, Garrido-Pérez C, Barragán J, Perales JA (2013) Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment. Bioresour Technol 127:456–463

    CAS  PubMed  Google Scholar 

  • Samori C, Torri C, Samorì G, Fabbri D, Galletti P, Guerrini F, Pistocchi R, Tagliavini E (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol 101:3274–3279

    CAS  PubMed  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    CAS  Google Scholar 

  • Singh M, Reynolds DL, Das KC (2011) Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour Technol 102:10841–10848

    CAS  PubMed  Google Scholar 

  • Spijkerman E (2005) Inorganic carbon acquisition by Chlamydomonas acidophila across a pH range. Can J Bot 83:872–878

    CAS  Google Scholar 

  • Takahashi M, Kato S, Shima H, Sarai E, Ichioka T, Hatyakawa S, Miyajiri H (2001) Technology for recovering phosphorus from incinerated wastewater treatment sludge. Chemosphere 44:23–29

    CAS  PubMed  Google Scholar 

  • Tan F, Wang Z, Zhouyang S, Li H, Xie Y, Wang Y, Zheng Y, Li Q (2016) Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry. Bioresour Technol 221:385–393

  • Tanada S, Kabayama M, Kawasaki N, Sakiyama T, Nakamura T, Araki M, Tamura T (2003) Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci 257:135–140

    CAS  PubMed  Google Scholar 

  • Tuantet K, Temmink H, Zeeman G, Janssen M, Wijffels RH, Buisman CJN (2014) Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Res 55:162–174

    CAS  PubMed  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45:309–311

    Google Scholar 

  • Vadiveloo A, Matos AP, Chaudry S, Bahri PA, Moheimani NR (2020) Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp. (Trebouxiophyceae). J CO2 Util 38:273–281

    CAS  Google Scholar 

  • Wahal S (2010) Nutrient utilization from anaerobic digester effluent through algae cultivation. Utah State University, Dissertation

    Google Scholar 

  • Walker GM (1994) The roles of magnesium in biotechnology. Crit Rev Biotechnol 14:311–354

    CAS  PubMed  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    CAS  PubMed  Google Scholar 

  • Wang L, Shi C, Wang L, Pan L, Zhang X, Zou J (2020) Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale 12:4790–4815

    CAS  PubMed  Google Scholar 

  • Watanabe T, Masaki K, Iwashita K, Fujii T, Iefuji H (2009) Treatment and phosphorus removal from high-concentration organic wastewater by the yeast Hansenula anomala J224 PAWA. Bioresour Technol 100:1781–1785

    CAS  PubMed  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystem, 3rd edn. Academic Press, San Diego

  • Wetzel RG, Likens GE (1991) Limnological analyses, 2nd edn. Springer, New York

  • Wilfert P, Dugulan AI, Goubitz K, Korving L, Witkamp GJ, Van Loosdrecht MCM (2018) Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Res 144:312–321

    CAS  PubMed  Google Scholar 

  • Zhang L, Jahng D (2010) Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: effects of alkali types. J Hazard Mater 182:536–543

    CAS  PubMed  Google Scholar 

  • Zhuang L, Wu Y, Espinosa VMD, Zhang T, Dao G, Hu H (2016) Soluble algal products (SAPs) in large scale cultivation of microalgae for biomass/bioenergy production: a review. Renew Sustain Energy Rev 59:141–148

    Google Scholar 

Download references

Acknowledgments

We thank Edanz Group (https://en-author-services.edanzgroup.com/) for editing English in a draft of this manuscript.

Code availability

The authors declare that software applications or custom codes support published claims and comply with field standards.

Funding

This study was funded by the Environment Research and Technology Development Fund (Grant Number 4-1406) from the Ministry of the Environment, Japan, to a research project entitled “Novel lake ecosystem management by sustainable harvesting and effective utilization of aquatic weed biomass” and a Research Grant from the Government of Kusatsu City (Shiga, Japan) to S. Ban. The authors gratefully acknowledge financial support from the China Scholarship Council to J. Qian, and an Overseas Research Fellowship from the Japan Society for the Promotion of Science (JSPS) to S. Akizuki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syuhei Ban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materials

ESM 1

(DOCX 2772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Liu, X., Ban, S. et al. pH treatments in continuous cultivation to maximize microalgal production and nutrient removal from anaerobic digestion effluent of aquatic macrophytes. J Appl Phycol 32, 3349–3362 (2020). https://doi.org/10.1007/s10811-020-02196-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02196-z

Keywords

Navigation