Skip to main content

Advertisement

Log in

Use of continuous culture to develop an economical medium for the mass production of Isochrysis galbana for aquaculture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop an economical agricultural fertilizer-based medium for the mass production of Isochrysis galbana Parke, a marine microalga producing docosahexaenoic acid (DHA) and considered an excellent feed for use in aquaculture. Different fertilizers were used to replace the main nutrients, nitrogen and phosphorus, and the micronutrients of the well-known commercial medium, ALGAL. The obtained results showed that I. galbana preferred nitrate, instead of ammonium, as the nitrogen source and phosphate as the phosphorus source. Nonetheless, a nitrate concentration above 4 mM inhibited cell growth. The alternative medium proposed achieved a biomass productivity 22% higher than that for the ALGAL medium, reducing the medium’s contribution to the overall biomass cost by over 95%, with protein, lipid, carbohydrate, and DHA contents at 44, 36, 25, and 1.47% of dry weight, respectively, thus providing a cheaper biomass with excellent nutritional value for use in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acién FG, Molina E, Fernández-Sevilla JM, Barbosa L, Gouveia C, Sepúlveda C, Bazaes J, Arbib Z (2017) Economics of microalgae production. In: González C, Muñoz R (eds) Economics of microalgae biomass production. Microalgae-based biofuels and bioproducts. From feedstock cultivation to end-products. Woodhead Publishing, Cambridge, pp 485–503

    Google Scholar 

  • Acosta ML, Sánchez A, García F, Contreras A, Molina E (2007) Analysis of kinetic, stoichiometry and regulation of glucose and glutamine metabolism in hybridoma batch cultures using logistic equations. Cytotechnology 54:189–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alkhamis Y, Qin JG (2015) Comparison of N and P requirements of Isochrysis galbana under phototrophic and mixotrophic conditions. J Appl Phycol 27:2231–2238

    CAS  Google Scholar 

  • Bangqin H, Shiyu H, Yan W, Huasheng H (2000) Effect of dissolved phosphorus on alkaline phosphatase activity in marine microalgae. Acta Oceanol Sin 19:29–35

    Google Scholar 

  • Brown MR (2002) Nutritional value of microalgae for aquaculture. In: Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortes MG, Simoes N (eds) Avances en nutrición acuícola VI. Memorias del VI Symposium Internacional de Nutrición Acuícola. 3rd–6th September, Cancun, Mexico, pp 281-292

  • Brown MR, Jeffrey SW, Garland CD (1989) Nutritional aspects of microalgae used in mariculture: a literature review. CSIRO Marine Reports 250

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    CAS  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, González-López CV, Fernández-Sevilla JM, Contreras-Gómez A, Molina-Grima E (2013) A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresour Technol 144:57–66

    PubMed  Google Scholar 

  • Cañavate JP, Armada I, Hachero-Cruzado I (2017) Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton. New Phytol 213:700–713

    PubMed  Google Scholar 

  • Carvalho AP, Pontes I, Gaspar H, Malcata FX (2006) Metabolic relationships between macro-and micronutrients, and the eicosapentaenoic acid and docosahexaenoic acid contents of Pavlova lutheri. Enzyme Microb Technol 38:358–366

    CAS  Google Scholar 

  • Chen W, Zhang Q, Dai S (2009) Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa. J Appl Phycol 21:701–706

    CAS  Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    CAS  PubMed  Google Scholar 

  • Colusse GA, Duarte MER, de Carvalho JC, Noseda MD (2019) Media effects on laboratory-scale production costs of Haematococcus pluvialis biomass. Bioresour Technol Rep 7:100236

    Google Scholar 

  • Dortch Q (1982) Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids, and protein in three marine diatoms. J Exp Mar Biol Ecol 61:242–264

    Google Scholar 

  • Elrifi IR, Holmes JJ, Weger HG, Mayo WP, Turpin DH (1988) RuBP limitation of photosynthetic carbon fixation during NH3 assimilation: interactions between photosynthesis, respiration, and ammonium assimilation in N-limited green algae. Plant Physiol 87:395–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sheek MM, Rady AA (1994) Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phyton 35:139–151

    Google Scholar 

  • Fabregas J, Herrero C (1985) Marine microalgae as a potential source of single cell protein (SCP). Appl Microbiol Biotechnol 23:110–113

    CAS  Google Scholar 

  • Fábregas J, Herrero C, Cabezas B, Abalde J (1986) Biomass production and biochemical composition in mass cultures of the marine microalga Isochrysis galbana Parke at varying nutrient concentrations. Aquaculture 53:101–113

    Google Scholar 

  • Fábregas J, Domínguez A, Regueiro M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol 53:530–535

    PubMed  Google Scholar 

  • Fernández-Reiriz MJ, Perez-Camacho A, Ferreiro MJ, Blanco J, Planas M, Campos MJ, Labarta U (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83:17–37

    Google Scholar 

  • Flynn KJ, Garrido JL, Zapata M, Öpik H, Hipkin CR (1992) Changes in fatty acids, amino acids and carbon/nitrogen biomass during nitrogen starvation of ammonium-and nitrate-grown Isochrysis galbana. J Appl Phycol 4:95–104

    CAS  Google Scholar 

  • Guedes AC, Malcata FX (2012) Nutritional value and uses of microalgae in aquaculture. In: Muchlisin Z (ed) Aquaculture. Intech, Rijeka, pp 59–78

  • Guedes AC, Sousa-Pinto I, Malcata FX (2015) Application of microalgae protein to aquafeed. In: Se-Kwon K (ed) Handbook of marine microalgae. Elsevier Academic Press, Oxford, pp 93–125

    Google Scholar 

  • Hemaiswarya SR, Raja R, Kumar R, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746

    Google Scholar 

  • Hu H, Li JY, Pan XR, Zhang F, Ma LL, Wang HJ, Zeng RJ (2019) Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Sci Total Environ 656:140–149

    CAS  PubMed  Google Scholar 

  • Huang B, Marchand J, Thiriet-Rupert S, Carrier G, Saint-Jean B, Lukomska E, Moreau B, Morant-Manceau A, Bougaran G, Mimouni V (2019) Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). Algal Res 40:101506

    Google Scholar 

  • Jacobsen A, Grahl-Nielsen O, Magnesen T (2010) Does a large-scale continuous algal production system provide a stable supply of fatty acids to bivalve hatcheries? J Appl Phycol 22:769–777

    CAS  Google Scholar 

  • Jeanfils J, Canisius MF, Burlion N (1993) Effect of high nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. J Appl Phycol 5:369–374

    CAS  Google Scholar 

  • Kaplan D, Cohen Z, Abeliovich A (1986) Optimal growth conditions for Isochrysis galbana. Biomass 9:37–48

    Google Scholar 

  • Kochert G (1978) Quantitation of the macromolecular components of microalgae. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods, physiological and biochemical methods. Cambridge University Press, Cambridge, pp 189–195

    Google Scholar 

  • Lacour T, Sciandra A, Talec A, Mayzaud P, Bernard O (2012) Diel variations of carbohydrates and neutral lipids in nitrogen-sufficient and nitrogen-starved cyclostat cultures of Isochrysis sp. J Phycol 48:966–975

    PubMed  Google Scholar 

  • Lari Z, Moradi-kheibari N, Ahmadzadeh H, Abrishamchi P, Moheimani NR, Murry MA (2016) Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J Appl Phycol 28:3235–3250

    CAS  Google Scholar 

  • Lavín PL, Lourenço SO (2005) An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures. Braz J Oceanogr 53:55–68

    Google Scholar 

  • Lin YH, Chang FL, Tsao CY, Leu JY (2007) Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor. Biochem Eng J 37:166–176

    CAS  Google Scholar 

  • Liu J, Sommerfeld M, Hu Q (2013) Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Appl Microbiol Biotechnol 97:4785–4798

    CAS  PubMed  Google Scholar 

  • Lomas MW, Glibert PM (2000) Comparisons of nitrate uptake, storage and reduction in marine diatoms and flagellates. J Phycol 36:903–913

    CAS  Google Scholar 

  • López CV, Cerón MC, Acién FG, Segovia C, Chisti Y, Fernández JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    PubMed  Google Scholar 

  • Lourenço SO, Marquez UML, Mancini-Filho J, Barbarino E, Aidar E (1997) Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture 148:153–168

    Google Scholar 

  • Lourenço SO, Barbarino E, Mancini-Filho K, Schinke KP, Aidar E (2002) Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation of aquaculture. Phycologia 41:58–68

    Google Scholar 

  • Marchetti J, Bougaran G, Le Dean L, Mégrier C, Lukomska E, Kaas R, Olivo E, Baron R, Robert R, Cadoret JP (2012) Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture 326:106–115

    Google Scholar 

  • Norici A, Dalsass A, Giordano M (2002) Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol Plantarum 116:186–191

    CAS  Google Scholar 

  • Paes CR, Faria GR, Tinoco NA, Castro DJ, Barbarino E, Lourenço SO (2016) Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Lat Am J Aquat Res 44:275–292

    Google Scholar 

  • Pancha I,  Chokshi K,  George B,  Ghosh T,  Paliwal C,  Maurya R,  Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146-154

  • Rasdi NW, Qin JG (2015) Effect of N: P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J Appl Phycol 27:2221–2230

    CAS  Google Scholar 

  • Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Cham, pp 143–154

    Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (2004) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Google Scholar 

  • Rocha JMS, García JEC, Henriques MHF (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242

    CAS  PubMed  Google Scholar 

  • Rodríguez-Ruiz J, Belarbi E, Sánchez JLG, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Tech 12:689–691

    Google Scholar 

  • Roopnarain A, Gray VM, Sym SD (2014) Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411

    CAS  PubMed  Google Scholar 

  • Roopnarain A, Sym S, Gray VM (2015) Effect of nitrogenous resource on growth, biochemical composition and ultrastructure of Isochrysis galbana (Isochrysidales, Haptophyta). Phycol Res 63:43–50

    CAS  Google Scholar 

  • Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E (2015) Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci 6:899

    PubMed  PubMed Central  Google Scholar 

  • Shah SMU, Abdullah MA (2018) Effects of macro/micronutrients on green and brown microalgal cell growth and fatty acids in photobioreactor and open-tank systems. Biocatal Agric Biotechnol 14:10–17

    Google Scholar 

  • Song P, Zhang L, Li Q (2018) Response of photosynthetic apparatus of Isochrysis galbana to different nitrogen concentrations. Bioresour Technol Rep 4:74–79

    Google Scholar 

  • Spiller H, Boger P (1977) Photosynthetic nitrite reduction by dithioerythritol and the effect of nitrite on electron transport in isolated chloroplasts. Photochem Photobiol 26:397–402

    CAS  Google Scholar 

  • Sukenik A, Wahnon R (1991) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana. Aquaculture 97:61–72

    CAS  Google Scholar 

  • Sun Z, Wei H, Zhou ZG, Ashokkumar M, Liu J (2018) Screening of Isochrysis strains and utilization of a two-stage outdoor cultivation strategy for algal biomass and lipid production. Appl Biochem Biotechnol 185:1100–1117

    CAS  PubMed  Google Scholar 

  • von Alvensleben N, Magnusson M, Heimann K (2016) Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J Appl Phycol 28:861–876

    Google Scholar 

  • von Wirén N, Merrick M (2004) Regulation and function of ammonium carriers in bacteria, fungi, and plants. Top Curr Genet 9:95–120

    Google Scholar 

  • Wen ZY, Chen F (2001) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzym Microb Technol 29:341–3477

    CAS  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Google Scholar 

Download references

Funding

This research was supported by the General Secretariat of Universities, Research and Technology of Andalucía Government (AGR-5334) and was co-financed with FEDER funds. We would also like to thank the CAJAMAR foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Contreras-Gómez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Rodríguez, J., Cerón-García, M.C., González-López, C. et al. Use of continuous culture to develop an economical medium for the mass production of Isochrysis galbana for aquaculture. J Appl Phycol 32, 851–863 (2020). https://doi.org/10.1007/s10811-019-02015-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-02015-0

Keywords

Navigation