Skip to main content
Log in

Influence of seaweed extracts and plant growth regulators on in vitro regeneration of Lycopersicon esculentum from leaf explant

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

An efficient in vitro regeneration protocol was developed for tomato from leaf explant using plant growth regulators, organic elicitors, polyamines, and seaweed extracts. Initially, excised leaf explant was cultured on medium containing different concentrations of auxins viz., 2,4-dichloropheonoxyacetic acid (2,4-D; 0.5–3.0 mg L−1), picloram (Pic; 0.5–3.0 mg L−1), 1-naphthaleneacetic acid (NAA; 0.5–3.0 mg L−1), and indole-3-acetic acid (IAA; 0.5–3.0 mg L−1). The most effective auxin was tested in combination with efficient cytokinins such as kinetin (Kin; 0.5–3.0 mg L−1), 6-benzylaminopurine (BAP; 0.5–3.0 mg L−1), and thidiazuron (TDZ; 0.5–3.0 mg L−1). To achieve the best organogenic capability, different elicitors (casein hydrolysate, yeast extract, glutamine and adenine sulfate), polyamines (putrescine, spermidine, and spermine), and seaweed (Gracilaria edulis and Sargassum wightii) extracts were tested at various concentrations. Among the plant growth regulators, additives, and seaweed extracts tested, the medium supplemented with 1.5 mg L−1 Pic + 1.0 mg L−1 TDZ + 80 mg L−1 casein hydrolysate induced maximum of 28.6 shoots per organogenic callus. Rapid elongation was achieved in the medium fortified with isopentenyladenine (1.2 mg L−1) and G. edulis extract (30%) and the seaweed S. wightii extract induced rooting of elongated shoots. The presence of plant growth regulators in seaweed extracts were further confirmed by FTIR and HPLC analysis. HPLC analysis of seaweed extracts and standard plant growth regulators revealed the presence of NAA and isopentenyladenine in S. wightii. The standard chromatogram of NAA correlated with the chromatogram of G. edulis. Hence this regeneration system provides an additional platform for generating transgenic plants in an efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afroz A, Chaudhry Z, Rashid U, Khan MR, Ali GM (2010) Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water. Afr J Biotechnol 9:3634–3644

    CAS  Google Scholar 

  • Arioli T, Mattner SW, Winberg PC (2015) Applications of seaweed extracts in Australian agriculture: past, present and future. J Appl Phycol 27:2007–2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu S, Rengasamy R (2012) Effect of Kappaphycus alvarezii SLF treatment on seed germination, growth and development of seedling in some crop plants. J Acad Indust Res 1:186–195

    Google Scholar 

  • Bais PH, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Org Cult 69:1–34

    Article  CAS  Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol-Plant 44:384–395

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2007) Rapid micropropagation of Psoralea corylifolia L. using nodal explants cultured in organic additive supplemented medium. J Hortic Sci Biotechnol 82:908–913

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2010) Direct organogenesis from hypocotyls explants of Psoralea corylifolia L.–an endangered medicinal plant. Indian J Biotechnol 9:329–332

    Google Scholar 

  • Baskaran P, Jayabalan N, Van Staden J (2011) Production of psoralen by in vitro regenerated plants from callus cultures of Psoralea corylifolia L. Plant Growth Regul 65:47–54

    Article  CAS  Google Scholar 

  • Battacharyya D, Babbohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48

    Article  CAS  Google Scholar 

  • Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotechnol Adv 32:170–189

    Article  CAS  PubMed  Google Scholar 

  • Bhatia P, Ashwath N, Senaratna T, Midmore D (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss Org 78:1–21

    Article  Google Scholar 

  • Carrasco-Gill S, Apaolaza LH, Lucena JJ (2018) Effect of several commercial seaweed extracts in the mitigation of iron chlorosis of tomato plants (Solanum lycopersicum L.). Plant Growth Regul 86:401–411

    Article  CAS  Google Scholar 

  • Chaudhary Z, Abbas S, Yasmin A, Rashid H, Ahmed H, Anjum MA (2010) Tissue culture studies in tomato (Lycopersicon esculentum) var. Moneymaker Pak J Bot 42:155–163

    Google Scholar 

  • Chbani A, Mawlawi H, Zaouk L (2013) Evaluation of brown seaweed (Padina pavonica) as biostimulant of plant growth and development. Afr J Agric Res 3:1155–1165

    Google Scholar 

  • Chong-Perez B, Reyes M, Rojas L, Ocana B, Perez B, Kosky RG, Angenon G (2012) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in banana cv. ‘Dwarf Cavendish’ (Musa AAA): effect of spermidine on transformation efficiency. Plant Cell Tissue Organ Cult 111:79–90

    Article  CAS  Google Scholar 

  • Collins GB, Vian WE, Phillips GC (1978) Use of 4-amino-3,5,6-trichloropicolinic acids as an auxin source in plant tissue cultures. Crop Sci 18:286–288

    Article  CAS  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Crouch IJ, Van Staden J (1992) Effect of seaweed concentrate on the establishment and yield of green house tomato plants. J Appl Phycol 4:291–296

    Article  Google Scholar 

  • D’Onofrio C, Morini S (2005) Development of adventitious shoots from in vitro grown Cydonia oblonga leaves as influenced by different cytokinins and treatment duration. Biol Plant 49:17–21

    Article  Google Scholar 

  • Denchev PD, Conger BV (1994) Plant regeneration from callus cultures of switch grass. Crop Sci 34:1623–1627

    Article  Google Scholar 

  • Duzyaman E, Tanrisever A, Gunver G (1994) Comparative studies on regeneration of different tissues of tomato in vitro. Acta Hortic 366:235–242

    Article  Google Scholar 

  • Eapen S, George L (1990) Influence of phytohormones, carbohydrates, aminoacids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell Tissue Organ Cult 22:87–93

    Article  CAS  Google Scholar 

  • El-Farash EM, Abdalla HI, Taghian AS, Ahmad MH (1993) Genotype, explant age and explant type as effecting callus and shoot regeneration in tomato. Assiut J Agri Sci 24:3–14

    Google Scholar 

  • Fari M, Szasz A, Mityko J, Nagy I, Csanyi M, Andrasfalvy A (1992) Induced organogenesis via the seedling decapitation method (SDM) in three solanaceous vegetable species. Capsicum Newsletter (special edition) 243–248

  • Frary A, Earle ED (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep 16:235–240

    CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cell. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • George L, Eapen S (1990) High frequency plant regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn.). Euphytica 48:269–274

    Article  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 115–173

    Google Scholar 

  • Gorka B, Wieczorek P (2017) Simultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDA. J Chromatogr B 1057:32–39

    Article  CAS  Google Scholar 

  • Gubis J, Lajchova Z, Farago J, Jurekova Z (2004) Effect of growth regulators on shoot induction and plant regeneration in tomato (Lycopersicon esculentum Mill.). Biologia (Bratislava) 59:405–408

    CAS  Google Scholar 

  • Hamza S, Chupeau Y (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium mediated transformation from tomato (Lycopersicon esculentum). J Exp Bot 44:1837–1845

    Article  CAS  Google Scholar 

  • He GY, Lazzeri PA (2001) Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119:369–376

    Article  CAS  Google Scholar 

  • Hong DD, Hien HM, Son PN (2007) Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826

    Article  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah M, Khosh-Khui M (1992) Comparisons of in vitro propagation of tomato cultivars. Iran Agri Res 8:37–47

    Google Scholar 

  • Jabeen N, Chaudhry Z, Rashid H, Mirza B (2005) Effect of genotype and explant type on in vitro shoot regeneration of tomato (Lycopersicon esculentum). Pak J Bot 37:899–903

    Google Scholar 

  • Jain N, Babbar SB (2003) Regeneration of juvenile plants of black plum, Syzygium cuminii skeels, from nodal explants of mature trees. Plant Cell Tissue Organ Cult 73:257–263

    Article  CAS  Google Scholar 

  • Kachhwaha S, Kothari SL (1994) Mode of plant regeneration in immature embryo cultures of Hordeum vulgare L. Acta Bot Ind 22:232–235

    Google Scholar 

  • Kaur P, Kothari SL (2004) In vitro culture of kodo millet: influence of 2,4-D and picloram in combination with kinetin on callus initiation and regeneration. Plant Cell Tissue Organ Cult 77:73–79

    Article  CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Khan W, Hiltz D, Critchley AT, Prithiviraj B (2011) Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414

    Article  Google Scholar 

  • Khurana-Kaul V, Kachhwaha S, Kothari SL (2010) Direct shoot regeneration from leaf explants of Jatropha curcas in response to thidiazuron and high copper contents in the medium. Biol Plant 54:369–372

    Article  CAS  Google Scholar 

  • Komalavalli N, Rao MV (2000) In vitro micropropagation of Gymnema sylvestre–a multipurpose medicinal plant. Plant Cell Tissue Organ Cult 61:97–105

    Article  Google Scholar 

  • Layek J, Das A, Idapuganti RG, Sarka D, Ghosh A, Zodape ST, Lal R, Yadav GS, Panwar AS, Ngachan S, Meena RS (2018) Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. J Appl Phycol 30:547–558

    Article  CAS  Google Scholar 

  • Mansori M, Chernane H, Latique S, Benaliat A, Hsissou D, El Kaoua M (2016) Effect of seaweed extract (Ulva rigida) on the water deficit tolerance of Salvia officinalis L. J Appl Phycol 28:1363–1370

    Article  CAS  Google Scholar 

  • Mendoza MG, Kaeppler HF (2002) Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev Biol - Plant 38:39–45

    Article  CAS  Google Scholar 

  • Mori I, Ikeda Y, Matsuura T, Hiramaya T, Mikami K (2017) Phytohormones in red seaweeds: a technical review of methods for analysis and a consideration of genomic data. Bot Mar 60:153–170

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nitnaware KM, Naik DG, Nikam TD (2011) Thidiazuron-induced shoot organogenesis and production of hepatoprotective lignan phyllanthin and hypophyllanthin in Phyllanthus amarus. Plant Cell Tissue Organ Cult 104:101–110

    Article  CAS  Google Scholar 

  • Otroshy M, Khalili Z, Ebrahimi MA, Nekoui MK, Moradi K (2013) Effect of growth regulators and explant on plant regeneration of Solanum lycopersicum L. var. cerasiforme. Russian Ag Sci 39:226–235

    Article  Google Scholar 

  • Padliskikh VL, Yarmishin AP (1990) Features of microclonal propagation in tomato. Vestsi Akademii Navuk BSS, Reryya Biyalagichnykh Navuk 6:52–54

    Google Scholar 

  • Peres LEP, Morgante PG, Vecchi C, Kraus JE, Sluys MAV (2001) Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tissue Organ Cult 65:37–44

    Article  CAS  Google Scholar 

  • Prakash P, Mitra A, Nag R, Sunkar S (2018) Effect of seaweed liquid fertilizer and humic acid formulation on the growth and nutritional quality of Abelmoschus esculentus. Asian J Crop Sci 10:48–52

    Article  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Daniel MA, Ignacimuthu S (2013) Efficacious somatic embryogenesis and fertile plant recovery from shoot apex explants of onion (Allium cepa. L.). In Vitro Cell Dev Biol - Plant 49:285–293

    Article  Google Scholar 

  • Rayorath P, Khan W, Palanisamy R, MacKinnon SL, Stefanova R, Hankins SD, Critchley AT, Prithiviraj B (2008) Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. J Plant Growth Regul 27:370–379

    Article  CAS  Google Scholar 

  • Satish L, Rency AS, Rathinapriya P, Ceasar SA, Pandian S, Rameshkumar R, Rao TB, Balachandran SM, Ramesh M (2016a) Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn). Plant Cell Tissue Organ Cult 124:15–31

    Article  CAS  Google Scholar 

  • Satish L, Rathinapriya P, Rency AS, Ceasar SA, Pandian S, Rameshkumar R, Ramesh M (2016b) Somatic embryogenesis and regeneration using Gracilaria edulis and Padina boergesenii seaweed liquid extracts and genetic fidelity in finger millet (Eleusine coracana). J Appl Phycol 28:2083–2098

    Article  Google Scholar 

  • Shukla MR, Jones AMP, Sullivan JA, Liu CZ, Gosling S, Saxena PK (2012) In vitro conservation of American elm (Ulmus americana): potential role of auxin metabolism in sustained plant proliferation. Can J For Res 42:686–697

    Article  CAS  Google Scholar 

  • Sivanandhan G, Mariashibu TS, Arun M, Rajesh M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279–2288

    Article  CAS  Google Scholar 

  • Stirk WA, Novak MS, van Staden J (2003) Cytokinins in macroalgae. Plant Growth Regul 41:13–24

    Article  CAS  Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novak O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39

    Article  CAS  Google Scholar 

  • Sunarpi JA, Kurnianingsih R, Julisaniah NI, Tullah AN (2010) Effect of seaweed extracts on growth and yield of rice plants. Bioscience 2:73–77

    Google Scholar 

  • Tay SA, Macleod JK, Palni LM, Letham DS (1985) Detection of cytokinins in a seaweed extract. Phytochemistry 24:2611–2614

    Article  CAS  Google Scholar 

  • Vinoth S, Gurusaravanan P, Jayabalan N (2012) Effect of seaweed extracts and plant growth regulators on high frequency in vitro mass propagation of Lycopersicon esculentum L (tomato) through double cotyledonary nodal explants. J Appl Phycol 24:1329–1337

    Article  CAS  Google Scholar 

  • Vinoth S, Gurusaravanan P, Jayabalan N (2014) Optimization of somatic embryogenesis protocol in Lycopersicon esculentum L. using plant growth regulators and seaweed extracts. J Appl Phycol 26:1527–1537

    Article  CAS  Google Scholar 

  • Vishnoi RK, Kothari SL (1996) Somatic embryogenesis and efficient plant regeneration in immature inflorescence culture of Setaria italica (L.) Beauv. Cereal Res Commun 24:291–297

    Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank ANJA College, Sivakasi, Tamilnadu, for HPLC instrumentation and support in analyzing the samples.

Funding

The authors are thankful for the financial support assisted by the Council of Scientific and Industrial Research (CSIR), New Delhi, India through CSIR_SRF (Order no. 09/475(0189)/2012-EMR-I Dated:19.03.13) and University Grants Commission (UGC), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vinoth.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinoth, S., Gurusaravanan, P., Sivakumar, S. et al. Influence of seaweed extracts and plant growth regulators on in vitro regeneration of Lycopersicon esculentum from leaf explant. J Appl Phycol 31, 2039–2052 (2019). https://doi.org/10.1007/s10811-018-1703-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1703-z

Keywords

Navigation