Skip to main content
Log in

Optimising biomass and peridinin accumulation in the dinoflagellate Symbiodinium voratum using a twin-layer porous substrate bioreactor

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Dinoflagellates are a natural source for unique secondary metabolites and pigments, which have considerable potential for applications in biomedical drug development and cosmetics. However, the technical cultivation of dinoflagellates in commonly used suspension-based closed photobioreactors (PBRs) has been shown to be difficult due to the sensitivity of the cultures to turbulence and shear forces. To overcome these and other constraints of suspension cultivation, immobilised cultivation of the dinoflagellate Symbiodinium voratum has been performed using a twin-layer porous substrate bioreactor (TL-PSBR). By optimising biomass growth using printing paper as substrate, a maximal biomass growth rate of 7.8 g dry weight m−2 growth area day−1 was measured over a period of 40 days at the relatively high-light intensity of 600 μmol photons m−2 s−1 and 2% (v/v) CO2. Linear growth of the S. voratum biofilm was observed over 40 days, and a maximal biomass standing crop of 305 g m−2 was gained. Synthesis of the potentially high-value carotenoid pigment peridinin, however, was favoured at low-light conditions (≤ 100 μmol photons m−2 s−1). By combining maximal biomass growth at high-light conditions with maximal peridinin accumulation at low-light conditions in a two-phase approach (14 days cultivation at 600 μmol photons m−2 s−1 and 2% CO2 followed by 14 days at 100 μmol photons m−2 s−1 and ambient air), a peridinin productivity of 51.4 mg peridinin m−2 day−1 was measured (about 30% higher than the values determined at either low- or high-light conditions). Using the two-phase approach, peridinin accumulated to a standing crop of ~ 1 g peridinin m−2 after 28 days of cultivation in a bench-scale TL-PSBR with a peridinin content in the dry biomass of 1% (w/w). Symbiodinium voratum may thus be a suitable source of peridinin for a diverse range of applications when grown in a twin-layer porous substrate bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Assunção J, Guedes C, Xavier Malcata F (2017) Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar Drugs 15:393–436

    Article  Google Scholar 

  • Barros MP, Pinto E, Colepicolo P, Pedersén M (2001) Astaxanthin and peridinin inhibit oxidative damage in Fe2+-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Comm 288:225–232

    Article  CAS  Google Scholar 

  • Benstein RM, Cebi Z, Podola B, Melkonian M (2014) Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium sp. in a simple biofilm photobioreactor. Mar Biotechnol 16:621–628

    Article  CAS  Google Scholar 

  • Beuzenberg V, Mountfort D, Holland P, Shi F, MacKenzie L (2011) Optimization of growth and production of toxins by three dinoflagellates in photobioreactor cultures. J Appl Phycol 24:1023–1033

    Article  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Camacho FG, Gallardo Rodríguez J, Sánchez Mirón A, Cerón García M, Belarbi E, Molina Grima E (2007) Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks. Process Biochem 42:1506–1515

    Article  Google Scholar 

  • Camacho FG, Gallardo Rodríguez J, Sánchez Mirón A, Belarbi E, Chisti Y, Molina Grima E (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 46:936–944

    Article  CAS  Google Scholar 

  • Carbone DA, Olivieri G, Pollio A, Pinto G, Melkonian M (2017) Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations. Appl Microbiol Biotechnol 101:8321–8329

    Article  CAS  Google Scholar 

  • Chuyen HV, Eun JB (2017) Marine carotenoids: bioactivities and potential benefits to human health. CRC Rev Food Sci 57:2600–2610

    Article  CAS  Google Scholar 

  • Croce R, Van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501

    Article  CAS  Google Scholar 

  • Falkowski PG, Owens TG (1980) Light shade adapation-2 strategies in marine phytoplankton. Plant Physiol 66:592–595

    Article  CAS  Google Scholar 

  • Foo SC, Yusoff FM, Ismail M, Basri M, Khong NMH, Chan KW, Yau SK (2015) Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Asian Pac J Trop Med 5:834–840

    Article  Google Scholar 

  • Fuentes-Grünewald C, Garces E, Alacid E, Rossi S, Camp J (2013) Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. Mar Biotechnol 15:37–47

    Article  Google Scholar 

  • Gagez A, Thiery V, Pasquet V, Cadoret JP, Picot L (2012) Epoxycarotenoids and cancer. Review. Curr Bioact Compd 8:109–141

    Article  CAS  Google Scholar 

  • Gallardo Rodríguez JJ, Cerón García M, Garcia Camacho F, Sanchez Miron A, Belarbi EH, Molina Grima E (2007) New culture approaches for yessotoxin production from the dinoflagellate Protoceratium reticulatum. Biotechnol Prog 23:339–350

    Article  Google Scholar 

  • Gallardo Rodríguez JJ, Sánchez Mirón A, García Camacho F, Cerón García M, Belarbi E, Molina Grima E (2010) Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production. Process Biochem 45:660–666

    Article  Google Scholar 

  • Gallardo Rodríguez J, López Rosales L, Sánchez Mirón A, Molina Grima E, Chalmers JJ (2016) New insights into shear-sensitivity in dinoflagellate microalgae. Bioresour Technol 200:699–705

    Article  Google Scholar 

  • Gibson CH, Thomas WH (1995) Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate, Gonyaulax polyedra Stein. J Geophys Res 100:2156–2202

    Google Scholar 

  • Gómez-Loredo A, Benavides J, Rito-Palomares M (2015) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J Appl Phycol 28:849–860

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Haguet Q, Bonnet A, Bérard JB, Goldberg J, Joguet N, Audrey F, Thiéry V, Picot L (2017) Antimelanoma activity of Heterocapsa triquetra pigments. Algal Res 25:207–215

    Article  Google Scholar 

  • Haidak DJ, Mathews CK, Sweeney BM (1966) Pigment protein complex from Gonyaulax. Science 152:212–213

    Article  CAS  Google Scholar 

  • Haxo FT, Kycia JH, Somers GF, Benneit A, Harold W (1976) Peridinin chlorophyll a proteins of the dinoflagellate Amphidinium carterae (Plymouth 450). Plant Physiol 57:297–303

    Article  CAS  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272:1788–1791

    Article  CAS  Google Scholar 

  • Hu H, Chen W, Shi Y, Cong W (2006) Nitrate and phosphate supplementation to increase toxin production by the marine dinoflagellate Alexandrium tamarense. Mar Poll Bull 52:756–760

    Article  CAS  Google Scholar 

  • Ishikawa C, Jomori T, Tanaka J, Senba M, Mori N (2016) Peridinin, a carotenoid, inhibits proliferation and survival of HTLV-1-infected T-cell lines. Int J Oncol 49:1713–1721

    Article  CAS  Google Scholar 

  • Jeffery SW, Haxo FT (1968) Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol Bull 135:149–165

    Article  Google Scholar 

  • Jeffrey SW (1968) Quantitative thin layer chromatography of chlorophylls and carotenoids from marine algae. Biochim Biophys Acta 162:271–285

    Article  CAS  Google Scholar 

  • Johansen JE, Svec WA, Liaaen-Jensen S, Haxo FT (1974) Carotenoids of the Dinophyceae. Phytochemistry 13:2261–2271

    Article  CAS  Google Scholar 

  • Jovine RVM, Triplett E, Nelson NB, Prézelin BB (1992) Quantification of chromophore pigments, apoprotein abundance and isoelectric variants of peridinin-chlorophyll a-protein complexes (PCPs) in the dinoflagellate Heterocapsa pygmaea grown under variable light conditions. Plant Cell Physiol 33:733–741

    CAS  Google Scholar 

  • Karp-Boss L, Boss E, Jumars PA (2000) Motion of dinoflagellates in a simple shear flow. Limnol Oceanogr 45:1594–1602

    Article  Google Scholar 

  • Khalesi MK, Lamers P (2010) Partial quantification of pigments extracted from the zooxanthellate octocoral Sinularia flexibilis at varying irradiances. Biologia 65:681–687

    Article  Google Scholar 

  • Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    Article  CAS  Google Scholar 

  • Kiperstok AC, Sebestyén P, Podola B, Melkonian M (2017) Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Res 21:213–222

    Article  Google Scholar 

  • Li T, Strous M, Melkonian M (2017) Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS Microbiol Lett 364:fnx218

    Google Scholar 

  • López Rosales L, García Camacho F, Sánchez Mirón A, Contreras Gómez A, Molina Grima E (2015) An optimisation approach for culturing shear-sensitive dinoflagellate microalgae in bench-scale bubble column photobioreactors. Bioresour Technol 197:375–382

    Article  Google Scholar 

  • López Rosales L, García Camacho F, Sánchez Mirón A, Contreras Gómez A, Molina Grima E (2017) Modelling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors. Bioresour Technol 245:250–257

    Article  Google Scholar 

  • McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25:551–557

    Article  CAS  Google Scholar 

  • McLachlan J (1973) Growth media - marine. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measures. Cambridge University Press, London, pp 25–52

    Google Scholar 

  • Michelson AD, Barnard MR, Krueger LA, Frelinger AL, Furman MI (2000) Evaluation of platelet function by flow cytometry. Methods 21:259–270

    Article  CAS  Google Scholar 

  • Onodera KI, Konishi Y, Taguchi T, Kiyoto S, Tominaga A (2014) Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Mar Drugs 12:1773–1787

    Article  Google Scholar 

  • Recktenwald D (1987) Peridinin-chlorophyll complexes as fluorescent label. USA Patent 1987/ 4876190

  • Richardson K, Beardall J, Raven JA (1983) Adaption of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191

    Article  Google Scholar 

  • Rogers JE, Marcovich D (2007) A simple method for the extraction and quantification of photopigments from Symbiodinium spp. J Exp Mar Biol Ecol 353:191–197

    Article  CAS  Google Scholar 

  • Schultze LKP, Simon MV, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a twin-layer biofilm photobioreactor. Algal Res 8:37–44

    Article  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Strain H (1976) Algal carotenoids. Structural studies on peridinin. Acta Chem Scand B 30:109–120

    Article  Google Scholar 

  • Sugawara T, Yamashita, Sakai S, Asai A, Nagao A, Shiraishi T, Imai I, Hirata T (2007) Induction of apoptosis in DLD-1 human colon cancer cells by peridinin isolated from the dinoflagellate, Heterocapsa triquetra. Biosci Biotechnol Biochem 71:1069–1072

    Article  CAS  Google Scholar 

  • Sullivan JM, Swift E, Donaghay PL, Rines JEB (2003) Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. Harmful Algae 2:183–199

    Article  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Wang S, Chen J, Li Z, Wang Y, Fu B, Han X, Zheng L (2015) Cultivation of the benthic microalga Prorocentrum lima for the production of diarrhetic shellfish poisoning toxins in a vertical flat photobioreactor. Bioresour Technol 179:243–248

    Article  CAS  Google Scholar 

  • Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11:2667–2681

    Article  Google Scholar 

  • Yoshida T, Maoka T, Das SK, Kanazawa K, Horinaka M, Wakada M, Satomi Y, Nishino H, Sakai T (2007) Halocynthiaxanthin and peridinin sensitize colon cancer cell lines to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Res 5:615–625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Langenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langenbach, D., Melkonian, M. Optimising biomass and peridinin accumulation in the dinoflagellate Symbiodinium voratum using a twin-layer porous substrate bioreactor. J Appl Phycol 31, 21–28 (2019). https://doi.org/10.1007/s10811-018-1513-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1513-3

Keywords

Navigation