Skip to main content
Log in

Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m−2 s−1 or 1000 μmol photons m−2 s−1), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m−2 d−1) was observed at a light intensity of 600 μmol photons m−2 s−1 and 2% CO2. The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m−2 s−1 and an ambient CO2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10–12 g m−2 d−1, respectively. When compared to the performance of similar cultivation systems (15–30 g m−2 d−1), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arumugam M, Agarwal A, Arya MC, Ahmed Z (2013) Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour Technol 131:246–249

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz A, Avron M (1981) Glycerol and ß-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion. Trends Biochem Sci 6:297–299

  • Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels RH (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111:2436–2445

    Article  CAS  PubMed  Google Scholar 

  • Carbone DA, Gargano I, Pinto G, De Natale A, Pollio A (2017) Evaluating microalgal attachment to surfaces: a first approach towards a laboratory integrated assessment. Chem Eng Trans 57:73–78

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of closed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Della Greca M, Fiorentino A, Pinto G, Pollio A, Previtera L (1996) Biotransformation of progesterone by the green alga Chlorella emersonii C211-8H. Phytochemistry 41:1527–1529

    Article  CAS  Google Scholar 

  • De Morais A, Costa C (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  PubMed  Google Scholar 

  • Evans J (1989) Photosynthesis and nitrogen relationships in leaves of C3plants. Oecologia 78:9–19

    Article  PubMed  Google Scholar 

  • Gargano I, Olivieri G, Andreozzi R, Marotta R, Marzocchella A, Pollio A (2016) Biodiesel production in outdoor cultures of Scenedesmus vacuolatus. Chem Eng Trans 49:397–402

    Google Scholar 

  • Goswami R, Kalita M (2011) Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation - a study on their growth behaviour and lipid productivity under different concentration of urea as nitrogen source. J Algal Biomass Util 2:42–49

    Google Scholar 

  • Gross M, Wen Z (2014) Yearlong evaluation of performance and durability of a pilot scale revolving algal biofilm (RAB) cultivation system. Bioresour Technol 171:50–58

    Article  CAS  PubMed  Google Scholar 

  • Hase R, Oikawa O, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. J Biosci Bioeng 89:2157–2163

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Ji C, Wang J, Zhang W, Liu J, Wang H, Gao L, Liu T (2013) An applicable nitrogen supply strategy for attached cultivation of Aucutodesmus obliquus. J Appl Phycol 26:173–180

    Article  Google Scholar 

  • Jorquera O, Kiperstok A, Sales E, Embiruçu M, Ghilardi N (2010) Comparative energy life-cycle analysis of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Kaewkannetra P, Enmak P, Chiu T (2012) The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol Bioprocess Eng 17:591–597

    Article  CAS  Google Scholar 

  • Koller AP, Löwe H, Schmid V, Mundt S, Botz DV (2017) Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol Bioeng 114:308–320

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang W, Zhang M, Xing P, Yang Z (2010) PSII- efficiency, polysaccharide production, and phenotypic plasticity of Scenedesmus obliquus in response to changes in metabolic carbon flux. Biochem Syst Ecol 38::292–:299

  • Matsumoto H, Hamasak A, Sojia I, Yosaki I (1997) Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J Chem Eng Jpn 30:620–624

    Article  CAS  Google Scholar 

  • McBride C, Lopez S, Meenach C, Burnett M, Lee A, Nohilly F, Behnke C (2014) Contamination management in low cost open algae ponds for biofuels production. Ind Biotechnol 10:221–227

    Article  Google Scholar 

  • Melkonian M, Podola B (2010) Method and device for cultivating eucaryotic microorganisms or blue algae, and biosensor with cultivated eucaryotic microorganisms or blue algae. United States Patent No US 7:745,201

    Google Scholar 

  • Naumann T, Çebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25:1413–1420

    Article  CAS  Google Scholar 

  • Nowack E, Podola B, Melkonian M (2005) The 96-well twin-layer system: a novel approach in the cultivation of microalgae. Protist 156:239–251

    Article  PubMed  Google Scholar 

  • Olivieri G, Salatino P, Marzocchella A (2013) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol 89:178–195

    Article  Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  • Ozkan A, Berberoglu H (2013) Cell to substratum and cell to cell interactions of microalgae. Colloids Surf B Biointerfaces 112:302–309

    Article  CAS  PubMed  Google Scholar 

  • Perrine Z, Negi S, Sayre R (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142

    Article  Google Scholar 

  • Podola B, Li T, Melkonian M (2017) Porous substrate bioreactors - a paradigm shift in microalgal biotechnology? Trends in Biotechnology Res 35:121–132

    Article  CAS  Google Scholar 

  • Pollio A, Pinto G, Della Greca M, Fiorentino A, Previtera L (1996) Biotransformations of progesterone by Chlorella spp. Phytochemistry 42:685–688

    Article  CAS  Google Scholar 

  • Richmond A (1986) Cell response to environmental factors. In: Richmond A (ed) Handbook for algal mass culture. CRC Press, Boca Raton, pp 87–95

    Google Scholar 

  • Schultze LKP, Simon MV, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a twin-layer biofilm photobioreactor. Algal Res 8:37–44

    Article  Google Scholar 

  • Sforza E, Grisa B, Carlos I, Farias S, Morosinotto T, Bertuccoa A (2014) Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chem Eng Trans 38:211–216

    Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

    Article  CAS  PubMed  Google Scholar 

  • Soletto D, Binaghi L, Lodi L, Carvalho JCM, Converti A (2005) Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture:243:4217–243:4422

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol:102: 3071–102: 3076

  • Wang J, Liu J, Liu T (2015) The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechnol Biofuels 26:8–49

    CAS  Google Scholar 

  • Zhang TY, Wu YH, Hu HY (2014) Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1. Water Sci Technol 69:2492–2496

    Article  CAS  PubMed  Google Scholar 

Download references

Ethical statement

This article does not contain any studies with human participants and animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Allegra Carbone.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, D.A., Olivieri, G., Pollio, A. et al. Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations. Appl Microbiol Biotechnol 101, 8321–8329 (2017). https://doi.org/10.1007/s00253-017-8515-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8515-y

Keywords

Navigation