Skip to main content

Advertisement

Log in

Antidiabetic studies of Chaetomorpha antennina extract using experimental models

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Chaetomorpha antennina is a marine green alga found abundantly on the southern coast of India. This study explores the efficacy of C. antennina extracts in the management of diabetes using in vitro and in vivo models. The algal metabolites were extracted using various solvents and evaluated for inhibitory effect against key metabolic enzymes involved in blood sugar management and antioxidant property. Among the various extracts, methanolic extract of C. antennina (MECA) was found to be effective in all the inhibitory assays including, α-amylase (IC50 525.8 μg mL−1), α-glucosidase (IC50 121.3 μg mL−1), DPP-IV (IC50 24.92 μg mL−1) and antioxidant activity using DPPH (38 %) under in vitro conditions. In toxicity assays, MECA was nontoxic against mouse macrophage cells (J774) and red blood cells. Further, in vivo studies of MECA (250 mg kg−1 B.wt) on streptozotocin (STZ)-induced diabetic rats for a period of 28 days reduced the fasting blood glucose level to 39.97 % and that of positive control glibenclamide (0.25 mg kg−1 B.wt) was 73.05 % respectively. Serum cholesterol, triglycerides, ALT and AST were significantly decreased after 28 days of MECA treatment. GC-MS analysis of MECA showed the presence of ascorbic acid, octadecadienoate and fucosterol which were already identified for antidiabetic action. Overall, this study shows that the MECA exhibits antidiabetic activity in STZ-induced diabetic rats. Therefore, MECA can be considered for further studies to evaluate its mechanism for the effective management of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahren B, Landin-Olsson M, Jansson P, Svensson M, Holmes D, Schweizer A (2004) Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 89:2078–2084

    Article  CAS  PubMed  Google Scholar 

  • Al-Masri IM, Mohammad MK, Tahaa MO (2009) Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J Enzyme Inhib Med Chem 24:1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, Robertson JG (2005) Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 48:5025–5037

    Article  CAS  PubMed  Google Scholar 

  • Baron AD (1998) Postprandial hyperglycemia and α-glucosidase inhibitors. Diabetes Res Clin Pract 40:51–55

    Article  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  • Celikler S, Tas S, Vatan O, Ziyanok-Ayvalik S, Yildiz G, Bilaloglu R (2009) Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol 47:1837–1840

    Article  CAS  PubMed  Google Scholar 

  • Chin YX, Lim PE, Maggs CA, Phang SM, Sharifuddin Y, Green BD (2015) Anti-diabetic potential of selected Malaysian seaweeds. J Appl Phycol 27:2137–2148

    Article  CAS  Google Scholar 

  • Cyriac B, Eswaran K (2016) Anti-hyperglycemic effect of aqueous extract of Kappaphycus alvarezii (Doty) Doty ex. P. Silva in alloxan-induced diabetic rats. J Appl Phycol 28:2507–2513

  • de Souza ET, de Lira DP, de Queiroz AC, da Silva DJ, de Aquino AB, Mella EA, Lorenzo VP, de Miranda GE, de Araújo-Júnior JX, Chaves MC, Barbosa-Filho JM, de Athayde-Filho PF, Santos BV, Alexandre-Moreira MS (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Deacon CF (2011) Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab 13:7–18

    Article  CAS  PubMed  Google Scholar 

  • Eom SH, Lee SH, Yoon NY, Jung WK, Jeon YJ, Kim SK (2012) α-Glucosidase-and α-amylase inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric 92:2084–2090

    Article  CAS  PubMed  Google Scholar 

  • Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-I (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 130:159–166

    CAS  PubMed  Google Scholar 

  • Ganesh EA, Das S, Arun G, Balamurugan S, Raj RR (2009) Heparin like compound from green alga Chaetomorpha antennina as potential anticoagulant agent. Asian J Med Sci 1:114–116

    CAS  Google Scholar 

  • Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19:257–267

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Honda M (1990) The inhibition of α-amylase by tea polyphenols. Ag Biol Chem 54:1939–1945

    CAS  Google Scholar 

  • Jayasri MA, Radha A, Mathew TL (2009) α-Amylase and α-glucosidase inhibitory activity of Costus pictus D. Don in the management of diabetes. J Herb Med Toxicol 3:91–94

    Google Scholar 

  • Jung HA, Islam MN, Lee CM, Oh SH, Lee S, Jung JH, Choi JS (2013) Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis, and Ecklonia stolonifera. Chem Biol Interact 206:55–62

    Article  CAS  PubMed  Google Scholar 

  • Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M (1999) Beneficial effects of antioxidants in diabetes possible protection of pancreatic β-cells against glucose toxicity. Diabetes 48:2398–2406

    Article  CAS  PubMed  Google Scholar 

  • Kasetti RB et al (2010) Antihyperglycemic and antihyperlipidemic activities of methanol: water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food Chem Toxicol 48:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, He H (2005) (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 48:141–151

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Tsujimoto T, Fujii H, Morimoto T, Yoshioka S, Kato S, Yasuhara Y, Aizawa S, Sawai M, Makutani S, Yamamoto K, Mochi T, Fukui H (2010) Pneumatosis cystoides intestinalis induced by the alpha-glucosidase inhibitor miglitol. Intern Med 49:1545–1548

    Article  PubMed  Google Scholar 

  • Ktari L, Guyot M (1999) A cytotoxic oxysterol from the marine alga Padina pavonica (L.) Thivy. J Appl Phycol 11:511

    Article  CAS  Google Scholar 

  • Kumar S, Narwal S, Kumar V, Prakash O (2011) α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 5:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebovitz HE (1997) Alpha-glucosidase inhibitors. Endocrinol Metabol Clin North Am 26:539–551

    Article  CAS  Google Scholar 

  • Lee S, Lee YS, Jung SH, Kang SS, Shin KH (2003) Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch Pharm Res 26:719–722

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Heo SJ, Hwang JY, Han JS, Jeon YJ (2010) Protective effects of enzymatic digest from Ecklonia cava against high glucose-induced oxidative stress in human umbilical vein endothelial cells. J Sci Food Agric 90:349–356

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Shin KH, Kim BK, Lee S (2004) Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res 27:1120–1122

    Article  CAS  PubMed  Google Scholar 

  • Malagoli D (2007) A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Inv Surv J 4:92–94

    Google Scholar 

  • Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Panikkar MVN (2009) Bio potentials of seaweeds collected from southwest coast of India. J Mar Sci Technol 17:67–73

    Google Scholar 

  • Mensor LL, Menezes FS, Leitao GG, Reis AS, Santos TC, Coube CS, Leitao SG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

    Article  CAS  PubMed  Google Scholar 

  • Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine-methionine and is responsible for their degradation in human serum. Eur J Biochem 214:829–835

    Article  CAS  PubMed  Google Scholar 

  • Moon HE, Islam MN, Ahn BR, Chowdhury SS, Sohn HS, Jung HA (2011) Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotech Biochem 75:1472–1480

    Article  CAS  Google Scholar 

  • Murphy C, Hotchkiss S, Worthington J, McKeown SR (2014) The potential of seaweed as a source of drugs for use in cancer chemotherapy. J Appl Phycol 26:2211–2264

    Article  CAS  Google Scholar 

  • Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Ørskov C, Ritzel R (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Phys 273:981–988

    Google Scholar 

  • Oboh G, Ademiluyi AO, Akinyemi AJ, Henle T, Saliu JA, Schwarzenbolz U (2012) Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. J Funct Foods 4:450–458

    Article  CAS  Google Scholar 

  • Peng J, Yuan JP, Wu CF, Wang JH (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9:1806–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajauria G, Jaiswal AK, Abu-gannam NISSREEN, Gupta S (2013) Antimicrobial, antioxidant and free radical-scavenging capacity of brown seaweed Himanthalia elongata from western coast of Ireland. J Food Biochem 37:322–335

    Article  CAS  Google Scholar 

  • Ravikumar S, Ramanathan G, Inbaneson SJ, Ramu A (2011) Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum. Parasitol Res 108:107–113

    Article  PubMed  Google Scholar 

  • Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S (2005) The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care 28:2130–2135

    Article  PubMed  Google Scholar 

  • Santeusanio F, Compagnucci P (1994) A risk-benefit appraisal of acarbose in the management of non-insulin-dependent diabetes mellitus. Drug Saf 6:432–444

    Article  Google Scholar 

  • Thanigaivel S, Vijayakumar S, Mukherjee A, Chandrasekaran N, Thomas J (2014) Antioxidant and antibacterial activity of Chaetomorpha antennina against shrimp pathogen Vibrio parahaemolyticus. Aquaculture 433:467–475

    Article  Google Scholar 

  • Vella A, Bock G, Giesler PD, Burton DB, Serra DB, Saylan ML, Deacon CF, Foley JE, Rizza RA, Camilleri M (2008) The effect of dipeptidyl peptidase 4 inhibition on gastric volume, satiation and enteroendocrine secretion in type 2 diabetes: a double blind, placebo-controlled crossover study. Clin Endocrinol 69:737–744

    Article  CAS  Google Scholar 

  • Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50:609–613

    Article  PubMed  Google Scholar 

  • White JR (2008) Dipeptidyl peptidase-IV inhibitors: pharmacological profile and clinical use. Clin Diabetes 26:53–57

    Article  Google Scholar 

  • Yokozawa T, Kim YA, Kim HY, Okamoto T, Sei Y (2007) Protective effect of Chinese prescription Kangen-karyu against high glucose-induced oxidative stress in LLC-PK1 cells. J Ethnopharmacol 109:113–120

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Department of Biotechnology, Government of India for their financial support (Grant No. BT/Bio-CARe/03/347/2010-11) and VIT University for providing all necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jayasri.

Ethics declarations

Animals were maintained as per the principles and guidelines of the Institutional Animal Ethical Committee (IAEC) in accordance with Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) guidelines on animal care. All animal experiments were approved by the IAEC, VIT/IAEC/8th/23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unnikrishnan, P.S., Jayasri, M.A. Antidiabetic studies of Chaetomorpha antennina extract using experimental models. J Appl Phycol 29, 1047–1056 (2017). https://doi.org/10.1007/s10811-016-0991-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0991-4

Keywords

Navigation