Skip to main content

Advertisement

Log in

Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae are rich in various high-value compounds and thus have been proposed for use in biodiesel production and other industrial processes. Mixotrophy of microalgae can generate a high biomass and a high cell content of desirable compounds. To elucidate the probable relationship between pH drift, carbon source utilization, light intensity, and biomass accumulation in Chlorella cultivation, we compared the growth, pH drift, total biomass, and lipid and starch contents of Chlorella sorokiniana GXNN01 under different culture conditions. We also labeled the cell with 13C-labeled substrates. The results of pH drift and 13C labeling showed that Chlorella preferred acetate under high light, but glucose under low light. Glucose utilization resulted in decrease of pH, while acetate had the opposite effect. A combination of acetic acid and glucose as carbon source maintained the pH close to the initial value and significantly increased total biomass production. Cultures using acetic acid as carbon source or addition of sodium acetate under low light appeared to enhance total lipid content, while pH adjustment, addition of two carbon sources, or addition of sodium acetate under normal light (20 μmol photons m−2 s−1) resulted in high starch content. This knowledge will guide future Chlorella cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts—polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arudchelvam Y, Nirmalakhandan N (2013) Energetic optimization of microalgal cultivation in photobioreactors for biodiesel production. Renew Energy 56:77–84

    Article  CAS  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report US DOE, Pittsburgh, USA, pp 1–201

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  CAS  PubMed  Google Scholar 

  • Ceron Garcia MC, Camacho FG, Miron AS, Sevilla JMF, Chisti Y, Grima EM (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689–694

    CAS  Google Scholar 

  • Feng B, Shao H, Cheng X (2006) Determination of formic acid and acetic acid concentrations in urine by high efficiency liquid chromatography. Chin J Health Lab Tech 16:207–208

    CAS  Google Scholar 

  • Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891

    Article  CAS  PubMed  Google Scholar 

  • Garci MCC, Sevilla JMF, Fernandez FGA, Grima EM, Camacho FG (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12:239–248

    Article  Google Scholar 

  • Garcia MCC, Miron AS, Sevilla JMF, Grima EM, Camacho FG (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum—influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305

    Article  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54:1665–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huan L, Xie X, Zheng Z, Sun F, Wu S, Li M, Gao S, Gu W, Wang G (2014) Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga. Plant Cell Physiol 55:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Kong WB, Song H, Cao YT, Yang H, Hua SF, Xia CG (2011) The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. Afr J Biotechnol 10:11620–11630

    CAS  Google Scholar 

  • Kotrbáček V, Doubek J, Doucha J (2015) The chlorococcalean alga Chlorella in animal nutrition: a review. J Appl Phycol 27:2173–2180

    Article  Google Scholar 

  • Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8:163–169 doi:10.1007/bf02186320

  • Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Maxwell DP, Falk S, Trick CG, Huner NP (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanchen A, Fuhrer T, Sauer U (2007) Determination of metabolic flux ratios from 13C-experiments and gas chromatography–mass spectrometry data. Methods Mol Biol 358:177–197

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Wang G (2009) Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chin J Oceanol Limnol 27:762–768

    Article  CAS  Google Scholar 

  • Qiao H, Wang G, Zhang X (2009) Isolation and characterization of Chlorella sorokiniana GXNN01 (Chlorophyta) with the properties of heterotrophic and microaerobic growth. J Phycol 45:1153–1162

    Article  PubMed  Google Scholar 

  • Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278

    Article  Google Scholar 

  • Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzym Microb Technol 27:312–318

    Article  CAS  Google Scholar 

  • Sijtsma L, Anderson AJ, Ratledge C (2010) Alternative carbon sources for heterotrophic production of docosahexaenoic acid by the marine alga Crypthecodinium cohnii. In: Ratledge C, Cohen Z (eds) Single cell oils: microbial and algal oils. AOCS Publishing, Pittsbourgh, pp 107–123

    Google Scholar 

  • Van Wagenen J, De Francisci D, Angelidaki I (2015) Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana. J Appl Phycol 27:1775–1782

    Article  Google Scholar 

  • Wang J, Curtis WR (2016) Proton stoichiometric imbalance during algae photosynthetic growth on various nitrogen sources: toward metabolic pH control. J Appl Phycol 28:43–52

  • Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • Xie X et al (2015) Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light. New Phytol 52:434–441

    Google Scholar 

  • Xiong W, Liu L, Wu C, Yang C, Wu Q (2010) 13C-tracer and gas chromatography–mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant Physiol 154:1001–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA11020404-1), National Natural Science Foundation of China (41406169), Postdoctoral Innovation Project Special Funds of Shandong Province (2014), and the National International cooperation project (2015DFG32160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Sun, L., Wu, S. et al. Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J Appl Phycol 29, 23–33 (2017). https://doi.org/10.1007/s10811-016-0920-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0920-6

Keywords

Navigation