Skip to main content
Log in

Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Heterotrophic culture of microalgae to develop methods of increasing biomass productivity and storage lipids has brought new insight to commercial biodiesel production. To understand the relationship between heterotrophy and lipid production, the effects of carbon sources on the growth and lipid accumulation of Chlorella sorokiniana GXNN01 was studied. The alga exhibited an increased growth rate in response to the addition of carbon sources, which reached the stationary phase after 48 h at 30°C. In addition, glucose and NaAc had a significant effect on the lipid accumulation during the early-stationary phase. Specifically, the lipid content was 0.237±0.026 g g−1 cell dry weight and 0.272±0.041 g L−1 when glucose was used as the carbon source, whereas the lipid content reached 0.287±0.018 g g−1 cell dry weight and 0.288±0.008 g L−1 when NaAc was used as the carbon source. The neutral lipid content was found to first decrease and then increase over time during the growth phase. A glucose concentration of 20 mmol L−1 gave the maximal lipid yield and the optimum harvest time was the early-stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An J Y, Sim S J, Lee J S, Kim B W. 2003. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J. Appl. Phycol., 15: 185–191.

    Article  Google Scholar 

  • Angelo C P, Lilian L N G, Michelle J C R, Núbia M R, Ednildo A T, Wilson A L, Pedro A P P, Jailson B A. 2005. Biodiesel: An Overview. J. Braz. Chem. Soc., 16: 1 313–1 330.

    Google Scholar 

  • Barclay W, Meager K, Abril J. 1994. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. Appl. Phycol., 6: 123–129.

    Article  Google Scholar 

  • Behrens P W, Kyle D J. 1996. Microalgae as a source of fatty acids. J. Food Lipids, 3: 259–272.

    Article  Google Scholar 

  • Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917.

    Google Scholar 

  • Borowitzka M A. 1995. Microalgae source of pharmaceuticals and other biologically active compounds. J. Appl. Phycol., 7: 3–15.

    Article  Google Scholar 

  • Borowitzka M A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol., 70: 313–321.

    Article  Google Scholar 

  • Buchanan B B, Gruissem W, Jones R L. 2000. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists. USA. p. 630–728.

    Google Scholar 

  • Cao C, Sun S, Mai K, Liang Y. 2000. Fatty acid composition and total lipid content of 30 strains of marine green algae. Journal of Ocean University of Qingdao, 30(3): 428–434.

    Google Scholar 

  • Chen F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol., 14: 421–426.

    Article  Google Scholar 

  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.

    Article  Google Scholar 

  • Cooksey K E, Guckert J B, Williams S A, Collis P R. 1987. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J. Microbiol. Meth., 6: 333–345.

    Article  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney M J. 2007. Fluorescent measurement of microalgal neutral lipids. J Microbiol. Meth., 68: 639–642.

    Article  Google Scholar 

  • Greenspan P, Fowler S D. 1985. Spectrofluorometric studies of the lipid probe, nile red. J. Lipid. Res., 26: 781–789.

    Google Scholar 

  • Greenspan P, Mayer E P, Fowler S D. 1985. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol., 100: 963–973.

    Article  Google Scholar 

  • Kyle D J. 1992. Production and use of lipids from microalgae. Lipid Technol., 4: 59–64.

    Google Scholar 

  • Lee S J, Yoon B D, Oh H M. 1998. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech., 12: 553–556.

    Article  Google Scholar 

  • Liu Z, Wang G, Zhou B. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technol., 99: 4 717–4 722.

    Google Scholar 

  • Miao X, Wu Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technol., 97: 841–846.

    Article  Google Scholar 

  • Miao X, Wu Q, Yang C. 2004. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis, 71: 855–863.

    Article  Google Scholar 

  • Nichols H W. 1973. Growth Media-Freshwater. In: Stein J ed. Handbook of Phycological Methods, Culture Methods and Growth Measurements. Camb. Univ. Press, UK, p. 7–24.

    Google Scholar 

  • Running J A, Huss R J, Olson P T. 1994. Heterotrophic production of ascorbic acid by microalgae. J. Appl. Phycol., 4: 99–104.

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae. Golden, USA. p.12–13.

    Google Scholar 

  • Spolaore P, Cassan C J, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng., 101: 87–96.

    Article  Google Scholar 

  • Stewart W D P. 1974. Algae Physiology and Biochemistry. In: Burnett J H, Baker H G, Beevers H, Whatley F R eds. Botanical Monographys. Blackwell Scientific Publications, London, UK. p. 505–508.

    Google Scholar 

  • Tan C, Johns M. 1991. Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia, 215: 13–19.

    Article  Google Scholar 

  • Volkman J K, Jeffrey S W, Nichds P D. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Bial. Ecal., 128: 219–240.

    Article  Google Scholar 

  • Vicente G, Martinez M, Aracil J. 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technol., 92: 297–305.

    Article  Google Scholar 

  • Wen Z, Chen F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv., 21: 273–294.

    Article  Google Scholar 

  • Williams P B. 2007. Biofuel: microalgae cut the social and ecological costs. Nature, 450: 478.

    Article  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol., 78: 29–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang  (王广策).

Additional information

Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2006AA05Z112), the Key Project of Science and Technology for Supporting Tianjin Development (No. 2007LS700310), and the Knowledge Innovation Project of Chinese Academy of Sciences (No. KGCX2-YW-374-3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, H., Wang, G. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chin. J. Ocean. Limnol. 27, 762–768 (2009). https://doi.org/10.1007/s00343-009-9216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9216-x

Keyword

Navigation