Skip to main content
Log in

Profiles of carotenoids and amino acids and total phenolic compounds of the red alga Pterocladiella capillacea exposed to cadmium and different salinities

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The in vitro effect of cadmium (Cd) on apical segments of the red macroalga Pterocladiella capillacea was examined. Over a period of 7 days, the segments were cultivated with a combination of different salinities (25, 35, and 45 psu) and Cd concentrations ranging from 0.17 to 0.70 ppm. This study aimed to evaluate the effects of Cd exposure at various salinities on profiles of carotenoids amino acids and phenolic compounds. Carotenoid profile of control (0 ppm Cd) and Cd-treated plants of P. capillacea showed the presence of lutein, zeaxanthin, β-cryptoxanthin, α-carotene, trans-β-carotene and cis-β-carotene. Significant increase was found for almost all carotenoids, 0.35 ppm Cd + 25 psu, 0.70 ppm Cd + 25 psu, and 0 ppm Cd + 45 psu. Total phenolic compounds of P. capillacea had an overall decrease with treatments of Cd and 25 or 45 psu. Twenty essential amino acids were quantified in P. capillacea samples. At 0 ppm Cd and using baseline control of 35 psu, low and high salinity levels (25 and 45 psu, respectively) significantly altered total amino acid content. Apparently, salinity plays a greater role in amino acid response than Cd concentration. Therefore, more studies with intensified salinity stress over long-term exposure could confirm the major effect of the suggested treatment on this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akçay N, Bor M, Karabudak T, Ozdemir F, Turkan I (2012) Contribution of gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169:452–458

    Article  PubMed  Google Scholar 

  • Alcantara E, Romera FJ, Cañete M, de la Guardia MD (1994) Effects of heavy metal on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Angell AR, Mata L, Nys R, Paul NA (2015) Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta). J Phycol 51:536–545

    Article  CAS  PubMed  Google Scholar 

  • Aple K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  Google Scholar 

  • Armisen R, Galatas F (1987) Production, properties and uses of agar. FAO Fish Tech Pap 288:1–57

    Google Scholar 

  • Arora A, Byrem TM, Nari MG, Strasburg GM (2000) Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373:102–109

    Article  CAS  PubMed  Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochem 68:2722–2735

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collen J, Pinto E, Pedersen M, Colepicolo P (2003) Induction of oxidative stress in the red macroalgae Gracilaria tenuistipiata by pollutant metals. Arch Environ Contam Tox 45:337–342

    CAS  Google Scholar 

  • Connan S, Stengel DB (2011) Impacts of ambient salinity and copper on brown algae: interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. Aquatic Toxicol 104:1–13

    Article  CAS  Google Scholar 

  • Costa GB, de Felix MRL, Simioni C, Ramlov F, Oliveira ER, Pereira DT, Maraschin M, Chow F, Horta PA, Lalau CM, Da Costa CH, Matias WG, Bouzon ZL, Schmidt EC (2015) Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma., pp 1–15

    Google Scholar 

  • Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  CAS  PubMed  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Diannelidis BE, Delivopoulos SG (1997) The effects of zinc, copper and cadmium on the fine structure of Ceramium ciliatum (Rhodophyceae, Ceramiales). Mar Environ Res 44:127–134

    Article  CAS  Google Scholar 

  • Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas, Texas. Contrib. Mar Sci Austin 15:1–228

    Google Scholar 

  • El-Sayed AB (2010) Carotenoids accumulation in the green alga Scenedesmus sp. incubated with industrial citrate waste and different induction stresses. Nat Sci 8:34–40

    Google Scholar 

  • Felix MRL, Osorio LKP, Ouriques LC, Farias-Soares FL, Steiner N, Kreusch M, Pereira DT, Simioni C, Costa GB, Horta PA, Chow F, Ramlov F, Maraschin M, Bouzon ZL, Schmidt EC (2014) The effect of cadmium under different salinity conditions on the cellular architecture and metabolism in the red alga Pterocladiella capillacea (Rhodophyta, Gelidiales). Microsc Microanal 20:1411–1424

    Article  Google Scholar 

  • Fodor A, Szabó-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792

    Google Scholar 

  • Fong P, Boyer KE, Desmond JS, Zedler JB (1996) Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae? J Exp Mar Biol Ecol 206:203–221

    Article  CAS  Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    Article  CAS  PubMed  Google Scholar 

  • Gholami M, Boughton BA, Fakhari AR, Ghanati F, Mirzaei HH, Borojeni LY, Zhang Y, Breitbach ZS, Armstrong DW, Roessner U (2014) Metabolomic study reveals a selective accumulation of l-arginine in the d-ornithine treated tobacco cell suspension culture. Process Biochem 49:140–147

    Article  CAS  Google Scholar 

  • Gouveia C, Kreusch M, Schmidt EC, Felix MRL, Osorio LKP, Pereira DT, dos Santos R, Ouriques LC, Martins RP, Latini A, Ramlov F, Carvalho TJG, Chow F, Maraschin M, Bouzon ZL (2013) The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microsc Microanal 19:513–524

    Article  CAS  PubMed  Google Scholar 

  • Hanafy MS, Rahman SM, Nakamoto Y, Fujiwara T, Naito S, Wakasa K, Ishimoto M (2013) Differential response of methionine metabolism in two grain legumes, soybean and azuki bean, expressing a mutated form of Arabidopsis cystathionine γ-synthase. J Plant Physiol 170:338–345

    Article  CAS  PubMed  Google Scholar 

  • Hulshof PJM, Kosmeijer-Schuil T, West CE, Hollman PCH (2007) Quick screening of maize kernels for provitamin A content. J Food Compos Anal 20:655–661

    Article  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Cr Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Liu C, Zhao L, Yu G (2011) The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol 53:608–618

    Article  CAS  PubMed  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mamboya FA, Pratap HB, Mtolera M, Bjork M (1999) The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalgae Padina boergesenii. In: Richmond MD, Francis J (ed) Proceedings of the Conference on Advances on Marine Sciences in Tanzania, pp 185–192

  • Márquez-García B, Fernández-Recamales MA, Córdoba F (2012) Effects of Cadmium on phenolic composition and antioxidant activities of Erica andevalensis. J Bot 2012:1–6

    Article  Google Scholar 

  • Martins CD, Arantes N, Faveri C, Batista MB, Oliveira EC, Pagliosa PR, Fonseca AL, Nunes JMC, Chow F, Pereira SB, Horta PA (2012) The impact of coastal urbanization on the structure of phytobenthic communities in southern Brazil. Mar Pollut Bull 64:772–778

    Article  CAS  PubMed  Google Scholar 

  • Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mendes LF, Stevani CV, Zambotti-Villela L, Yokoya NS, Colepicolo P (2014) Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta). Environ Sci Pollut Res 21:8216–8223

    Article  CAS  Google Scholar 

  • Munda IM (1984) Salinity dependent accumulation of Zn, Co and Mn in Scytosiphon lomentatia (Lyngb.) Link and Enteromorpha intestinalis (L.) Link from the Adriatic Sea. Bot Mar 27:371–376

    Article  CAS  Google Scholar 

  • Oliveira LM, Silva JN, Coelho CCR, Neves MG, Silva RTL, Neto CFO (2013) Pigmentos fotossintetizantes, aminoácidos e proteínas em plantas jovens de graviola submetida ao déficit hídrico. Agrossistemas 5(1):39–44

    Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    Article  CAS  PubMed  Google Scholar 

  • Popova M, Bankova VS, Bogdanov S, Tsetkova I, Naydenski C, Marcazzan GL, Sabatini A (2007) Chemical characteristics of poplar type própolis of different geographic origin. Apidologie 38:306–311

    Article  CAS  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant response stress. Biol Plantarum 45:481–487

    Article  CAS  Google Scholar 

  • Ramana GV, Padhy SP, Chaitanya KV (2012) Differential responses of four soybean (Glycine max. L) cultivars to salinity stress. Legume Res 35:185–193

    Google Scholar 

  • Ros R, Munoz-Bertomeu J, Krueger S (2014) Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci 19:564–569

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Yamasaki H (2002) Lipid peroxidation induced by phenolics in conjunction with aluminium ions. Biol Plantarum 45:249–254

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Balbuena TS, Viana AM, Estelita MEM, Handro W, Floh EIS (2006) IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul 49:237–247

    Article  CAS  Google Scholar 

  • Santelices B, Hommersand M (1997) Pterocladiella, a new genus in the Gelidiaceae (Gelidiales, Rhodophyta). Phycologia 36:114–119

    Article  Google Scholar 

  • Santos RW, Schmidt EC, Felix MRL, Polo LKO, Kreusch MG, Pereira DT, Simioni C, Chow F, Ramlov F, Marashin M, Bouzon ZL (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotoxicol Environ Safe 105:80–89

    Article  Google Scholar 

  • Scherner F, Ventura R, Barufi J, Horta PA (2012) Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: Providing baselines for potential shifts on seaweed assemblages. Mar Environ Res 79:1–12

    Article  Google Scholar 

  • Scherner F, Horta PA, Oliveira EC, Simonassi JC, Hall-Spencer JM, Chow F, Nunes JMC, Pereira SMB (2013) Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull 76:106–115

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EC, Kreusch M, de Felix MR, Pereira DT, Costa GB, Simioni C, Ouriques LC, Farias-Soares FC, Steiner N, Chow F, Ramlov F, Maraschin M, Bouzon ZL (2015) Effects of ultraviolet radiation (UVA+UVB) and copper on the morphology, ultrastructural organization and physiological responses of the red alga Pterocladiella capillacea. Photochem Photobiol 91:359–370

    Article  CAS  PubMed  Google Scholar 

  • Schubert N, García-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216

    Article  CAS  Google Scholar 

  • Scott CE, Eldridge AL (2005) Comparison of carotenoid content in fresh, frozen, and canned corn. J Food Compos Anal 18:551–559

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plants responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Shinde S, Verslues PE (2013) Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana. BMC Plant Biol 13:182–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw BP (1995) Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plantarum 37:587–596

    Article  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Simioni C, Schmidt EC, Rover T, dos Santos RW, Filipin EP, Pereira DT, Costa GB, Oliveira ER, Chow F, Ramlov F, Ouriques LC, Maraschin M, Bouzon ZL (2015) Effects of cadmium metal on young gametophytes of Gelidium floridanum: metabolic and morphological changes. Protoplasma 252:1347–1359

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Toledo FA, Costa KB, Pivel MA (2007) Salinity changes in the western tropical South Atlantic during the last 30 kyr. Global Planet Change 57:383–395

    Article  Google Scholar 

  • Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Safety 71:1–15

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 245–300

    Google Scholar 

  • Yang Y, Liu X, Jiang Y, Xiang Z, Xu Q (2015) root growth, free amino acids, and carbohydrates of tall fescue in response to soil salinity. Hort Sci 50:609–614

    CAS  Google Scholar 

  • Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N (2013) An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine: phenylpyruvate aminotransferase. Nat Commun 4:2833

    Article  PubMed  Google Scholar 

  • Zhonghua T, Yanju L, Xiaorui G, Yuangang Z (2011) The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci 174:135–144

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the financial support of Éder C. Schmidt (process 473088/2013-4). Éder C. Schmidt holds a postdoctoral fellowship from CAPES. Zenilda L. Bouzon is a CNPq fellow. Fungyi Chow is a FAPESP fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éder C. Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1

Content of amino acids of P. capillacea after 7 days of exposure to cadmium and salinity treatments (n = 4, mean ± SD). a. 0 ppm Cd + 25 psu. b. 0 ppm Cd + 35 psu. c. 0 ppm Cd + 45 psu. d. 0.17 ppm Cd + 25 psu. e. 0.17 ppm Cd + 35 psu. f. 0.17 ppm Cd + 45 psu. g. 0.35 ppm Cd + 25 psu. h. 0.35 ppm Cd + 35 psu. i. 0.35 ppm Cd + 45 psu. j. 0.70 ppm Cd + 25 psu. k. 0.70 ppm Cd + 35 psu. l. 0.70 ppm Cd + 45 psu. Different letters indicate significant differences according to bifactorial ANOVA and Tukeys test (p ≤ 0.05). (TIFF 79791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, É.C., Felix, M.R.d.L., Kreusch, M.G. et al. Profiles of carotenoids and amino acids and total phenolic compounds of the red alga Pterocladiella capillacea exposed to cadmium and different salinities. J Appl Phycol 28, 1955–1963 (2016). https://doi.org/10.1007/s10811-015-0737-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0737-8

Keywords

Navigation