Skip to main content
Log in

Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study aimed to identify the optimal doses of the macroalgae Asparagopsis taxiformis and Oedogonium sp., individually and in combination, which would decrease the in vitro production of methane while minimizing adverse effects on fermentation, using rumen inoculant from Bos indicus steers. The dose-response experiment evaluated ten doses of Asparagopsis [ranging from 0 to 16.7 % of the organic matter (OM) incubated] and seven doses of Oedogonium (ranging from 0 to 100 % OM) using Rhodes grass hay as a basal substrate. Asparagopsis was highly effective in decreasing the production of methane with a reduction of 99 % at doses as low as 2 % OM basis. However, a dose of 2 % OM also decreased the production of volatile fatty acids (VFA). Oedogonium was less effective with doses ≥50 % OM significantly decreasing the production of methane. A combination of Asparagopsis (2 % OM) and Oedogonium (25 and 50 % OM) continued to suppress the production of methane, independent of the inclusion rate of Oedogonium. The effectiveness of Asparagopsis demonstrates its potential for the mitigation of methane emissions from ruminants at inclusion rates of ≤2 % OM. Oedogonium is a potential feed supplement due to its nutritional value, but supplements ≤25 % OM are recommended to avoid adverse effects on apparent in vitro fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson M, Gorley R, Clarke K (2008) Permanova + for primer: guide to software and statistical methods. Primer-E, Plymouth

    Google Scholar 

  • Beauchemin K, McGinn S (2006) Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J Anim Sci 84:1489–1496

    CAS  PubMed  Google Scholar 

  • Beauchemin KA, McGinn SM, Petit HV (2007) Methane abatement strategies for cattle: lipid supplementation of diets. Can J Anim Sci 87:431–440

    Article  CAS  Google Scholar 

  • Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 176:78–93

    Article  CAS  Google Scholar 

  • Chen R, Li R, Deitz L, Liu Y, Stevenson RJ, Liao W (2012) Freshwater algal cultivation with animal waste for nutrient removal and biomass production. Biomass Bioenergy 39:128–138

    Article  CAS  Google Scholar 

  • Cieslak A, Szumacher-Strabel M, Stochmal A, Oleszek W (2013) Plant components with specific activities against rumen methanogens. Animal 7:253–265

    Article  PubMed  Google Scholar 

  • Cieslak A, Zmora P, Stochmal A, Pecio L, Oleszek W, Pers-Kamczyc E, Szczechowiak J, Nowak A, Szumacher-Strabel M (2014) Rumen antimethanogenic effect of Saponaria officinalis L. phytochemicals in vitro. J Agri Sci 152:981–993

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E Ltd, Plymouth

    Google Scholar 

  • Cole AJ, de Nys R, Paul NA (2015) Biorecovery of nutrient waste as protein in freshwater macroalgae. Algal Res 7:58–65

    Article  Google Scholar 

  • Cone JW, van Gelder AH (1999) Influence of protein fermentation on gas production profiles. Anim Feed Sci Technol 76:251–264

    Article  CAS  Google Scholar 

  • Dubois B, Tomkins NW, Kinley RD, Bai M, Seymour S, Paul NA, de Nys R (2013) Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 4:34–43

    Article  CAS  Google Scholar 

  • France J, Dijkstra J (2005) Volatile fatty acid production. In: Forbers J, France J (eds) Quantitative aspects of ruminant digestion and metabolism. CAB International, Oxon, pp 157–175

    Chapter  Google Scholar 

  • Goel G, Makkar HPS (2012) Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 44:729–739

    Article  PubMed  Google Scholar 

  • Goel G, Makkar HP, Becker K (2009) Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations. Br J Nutr 101:1484–1492

    Article  CAS  PubMed  Google Scholar 

  • Goering H, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures, and some applications), vol 379. US Agricultural Research Service, Washington

    Google Scholar 

  • Hristov A, Oh J, Firkins J, Dijkstra J, Kebreab E, Waghorn G, Makkar H, Adesogan A, Yang W, Lee C (2013) Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 91:5045–5069

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Zhou W, Min M, Du Z, Chen P, Ma X, Liu Y, Lei H, Shi J, Ruan R (2013) Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Appl Energy 107:255–263

    Article  CAS  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  PubMed  Google Scholar 

  • Kinley R, Fredeen A (2014) In vitro evaluation of feeding North Atlantic stormtoss seaweeds on ruminal digestion. J Appl Phycol. doi:10.1007/s10811-014-0487-z

    Google Scholar 

  • Lawton RJ, de Nys R, Paul NA (2013) Selecting reliable and robust freshwater macroalgae for biomass applications. PLoS ONE 8(5), e64168

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Yang S, Lee W, Kim H, Shin D, Ha JK (2009) Effect of 2-bromoethanesulfonic acid on in vitro fermentation characteristics and methanogen population. Asian-Australas J Anim Sci 22:42–48

    Article  CAS  Google Scholar 

  • Lourenço SO, Barbarino E, De-Paula JC, Pereira LOS, Marquez UML (2002) Amino acid composition, protein content and calculation of nitrogen‐to‐protein conversion factors for 19 tropical seaweeds. Phycol Res 50:233–241

    Article  Google Scholar 

  • Machado L, Kinley RD, Magnusson M, de Nys R, Tomkins NW (2014a) The potential of macroalgae for beef production systems in Northern Australia. J Appl Phycol. doi:10.1007/s10811-014-0439-7

  • Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N (2014b) Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 9(1), e85289

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Fernández G, Abecia L, Martín-García A, Ramos-Morales E, Hervás G, Molina-Alcaide E, Yáñez-Ruiz D (2013) In vitroin vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Animal 7:1925–1934

    Article  PubMed  Google Scholar 

  • Mateos I, Ranilla M, Tejido M, Saro C, Kamel C, Carro MD (2013) The influence of diet type (dairy versus intensive fattening) on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Anim Prod Sci 53:299–307

    Article  CAS  Google Scholar 

  • Meale S, Chaves A, Baah J, McAllister T (2012) Methane production of different forages in in vitro ruminal fermentation. Asian-Australas J Anim Sci 25:81–91

    Google Scholar 

  • NHMRC (National Health and Medical Research Council) (2004) Australian code of practice for the care and use of animals for scientific purposes. Canberra, Australia. http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/ea16_animal_code.pdf

  • Morgavi D, Forano E, Martin C, Newbold CJ (2010) Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024–1036

    Article  CAS  PubMed  Google Scholar 

  • Neveux N, Magnusson M, Maschmeyer T, de Nys R, Paul NA (2014) Comparing the potential production and value of high-energy liquid fuels and protein from marine and freshwater macroalgae. GCB Bioenergy. doi:10.1111/gcbb.12171

    Google Scholar 

  • O'Brien M, Navarro-Villa A, Purcell P, Boland T, O'Kiely P (2014) Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives. Anim Prod Sci 54:141–157

    Article  Google Scholar 

  • Patra AK (2011) Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J Anim Vet Adv 6:416–428

    Article  CAS  Google Scholar 

  • Patra AK (2012) Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 184:1929–1952

    Article  CAS  PubMed  Google Scholar 

  • Paul N, de Nys R, Steinberg P (2006) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar Ecol Prog Ser 306:87–101

    Article  CAS  Google Scholar 

  • Poppi DP, McLennan SR (1995) Protein and energy-utilization by ruminants at pasture. J Anim Sci 73:278–290

    CAS  PubMed  Google Scholar 

  • Reay D, Smith P, van Amstel A (2010) Methane sources and the global methane budget. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan Ltd., Washington, pp 1–13

    Google Scholar 

  • Russell J, O'connor J, Fox D, Van Soest P, Sniffen C (1992) A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J Anim Sci 70:3551–3561

    CAS  PubMed  Google Scholar 

  • Scollan N, Hocquette J-F, Nuernberg K, Dannenberger D, Richardson I, Moloney A (2006) Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 74:17–33

    Article  CAS  PubMed  Google Scholar 

  • Tomkins N, Colegate S, Hunter R (2009) A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Anim Prod Sci 49:1053–1058

    Article  CAS  Google Scholar 

  • Wang Y, Xu Z, Bach S, McAllister T (2008) Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim Feed Sci Technol 145:375–395

    Article  CAS  Google Scholar 

  • Wood J, Kennedy FS, Wolfe R (1968) Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Woolard FX, Moore RE, Roller PP (1979) Halogenated acetic and acrylic acids from the red alga Asparagopsis taxiformis. Phytochemistry 18:617–620

    Article  CAS  Google Scholar 

  • Zhou Z, Meng Q, Yu Z (2011) Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl Environ Microbiol 77:2634–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is part of the MBD Energy Research and Development program for Biological Carbon Capture and Storage. This project is supported by funding from the Australian Government Department of Agriculture through the National Livestock Methane Production Project, the Australian Government through the Australian Renewable Energy Agency, and the Advanced Manufacturing Cooperative Research Centre (AMCRC), funded through the Australian Government’s Cooperative Research Centre Scheme. We thank Dr. Pedro de Paula Silva for assistance with the experiments and Dr. Matthew Vucko for the advice with the statistical analyses. We also thank Jeffrey Palpratt for handling and maintenance of the donor steers, and Dr. Shane Askew from the Advanced Analytical Centre, JCU, for analytical advice

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenna Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Results of full factorial permutational analyses of variance (PERMANOVAs) testing the effects of the fixed factors time (Ti), dose of Oedogonium (Do), and addition of Asparagopsis (Ad) on Gas parameters, VFA profiles, OMdeg, and pH of treatments in the macroalgae combination experiment. Analyses were conducted in Primer v6 (Primer-E Ltd, UK) using Bray-Curtis dissimilarities on fourth root transformed data and 999 unrestricted permutations of raw data. Pseudo F (F) and P values are presented, significant terms shown in bold. (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, L., Magnusson, M., Paul, N.A. et al. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J Appl Phycol 28, 1443–1452 (2016). https://doi.org/10.1007/s10811-015-0639-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0639-9

Keywords

Navigation