Skip to main content
Log in

A two-stage ultrafiltration process for separating multiple components of Tetraselmis suecica after cell disruption

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A two-stage ultrafiltration process was applied to the aqueous phase of Tetraselmis suecica after breaking its cell wall by high-pressure homogenization. Microscopic observation revealed that the cells were completely disrupted from 600 bar and cell fragmentation of the cells was also noticeable after 800 bar. In addition, the highest concentration of all the molecules of interest in the aqueous phase was observed at 1,000 bar and a temperature of 46 °C while preserving the integrity of the molecules of interest in the downstream process. After centrifugation, the aqueous phase was submitted to ultrafiltration through two consecutive membranes of different molecular weight cutoffs. Complete retention of starch was possible with a 100-kDa membrane and separation of sugars from proteins with a 10-kDa membrane on the remaining mixture. After testing the process with model solutions, the transmembrane pressure selected was 2.07 bar, which succeeded in retaining starch and pigments during the first part of the process, and proteins during the second part. A linear correlation between the permeate flux rate and the pressure was observed in both parts of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araujo GS, Matos LJ, Fernandes JO, Cartaxo SJ, Goncalves LR, Fernandes FA, Farias WR (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20:95–98

    Article  CAS  PubMed  Google Scholar 

  • Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460

    Article  CAS  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • D'Souza FML, Kelly GJ (2000) Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture 181:311–329

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Jeffrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. J Exp Mar Biol Ecol 161:115–134

    Article  CAS  Google Scholar 

  • Eteshola E, Gottlieb M, Arad S (1996) Dilute solution viscosity of red microalga exopolysaccharide. Chem Eng Sci 51:1487–1494

    Article  CAS  Google Scholar 

  • Fabregas J, Herrero C, Cabezas B, Abalde J (1985) Mass culture and biochemical variability of the marine microalga Tetraselmis suecica Kylin (Butch) with high nutrient concentrations. Aquaculture 49:231–244

    Article  CAS  Google Scholar 

  • Frappart M, Massé A, Jaffrin MY, Pruvost J, Jaouen P (2011) Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination 265:279–283

    Article  CAS  Google Scholar 

  • Gloaguen V, Ruiz G, Morvan H, Mouradi-Givernaud A, Maes E, Krausz P, Strecker G (2004) The extracellular polysaccharide of Porphyridium sp.: an NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr Res 339:97–103

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  CAS  PubMed  Google Scholar 

  • Kim J-D, Lee W-S, Kim B, Lee C-G (2006) Proteomic analysis of proteins expression patterns associated with astaxanthin accumulation by green alga Haematococcus pluvialis (Chlorophyceae) under high light stress. J Microbiol Biotechnol 16:1222–1228

    CAS  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Lourenço SO, Barbarino E, Marquez UML, Aidar E (1998) Distribution of intracellular nitrogen in marine microalgae: basis for the calculation of specific nitrogen-to-proteins conversion factors. J Phycol 34:798–811

    Article  Google Scholar 

  • Morineau-Thomas O, Jaouen P, Legentilhomme P (2002) The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae (Chlorella sp. and Porphyridium purpureum): advantage of a swirling decaying permeate flux. Bioprocess Biosyst Eng 25:35–42

    Article  CAS  PubMed  Google Scholar 

  • Morris HJ, Carrillo OV, Almarales Á, Bermúdez RC, Alonso ME, Borges L, Quintana MM, Fontaine R, Llauradó G, Hernández M (2009) Proteins hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immunonutrition. Biotechnol Appl 26:162–165

    Google Scholar 

  • Olmstead IL, Hill DR, Dias DA, Jayasinghe NS, Callahan DL, Kentish SE, Scales PJ, Martin GJ (2013) A quantitative analysis of microalgal lipids for optimization of biodiesel and omega-3 production. Biotechnol Bioeng 110:2096–2104

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Laroche C, Marcati A, Ursu AV, Jubeau S, Marchal L, Petit E, Djelveh G, Michaud P (2013) Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour Technol 145:345–350

    Article  CAS  PubMed  Google Scholar 

  • Pugh N, Ross SA, ElSohly HN, ElSohly MA, Pasco DS (2001) Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med 67:737–742

    Article  CAS  PubMed  Google Scholar 

  • Renaud SM, Thinh L-V, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    Article  CAS  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Safi C, Charton M, Pignolet O, Silvestre F, Vaca-Garcia C, Pontalier P-Y (2013) Influence of microalgae cell wall characteristics on proteins extractability and determination of nitrogen-to-proteins conversion factors. J Appl Phycol 25:523–529

    Article  CAS  Google Scholar 

  • Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble proteins from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Sheng J, Yang F, Hu Q (2007) Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chem 103:101–105

    Article  CAS  Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555

    Article  CAS  Google Scholar 

  • Susanto H, Arafat H, Janssen EML, Ulbricht M (2008) Ultrafiltration of polysaccharide–proteins mixtures: elucidation of fouling mechanisms and fouling control by membrane surface modification. Sep Purif Technol 63:558–565

    Article  CAS  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Wang X, Kolattukudy PE (1996) Isolation of a proteins containing covalently linked large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from Botryococcus braunii. Plant Physiol 111:441–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whyte JNC (1987) Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60:231–241

    Article  CAS  Google Scholar 

  • Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    Article  CAS  PubMed  Google Scholar 

  • Williams PJB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y (2010) Harvesting algal biomass for biofuels using ultrafiltration membranes. Bioresour Technol 101:5297–5304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the French national research agency (ANR) within the framework of “the Algoraffinerie” project. The authors are grateful to the “Direction de la Recherche de l’INP” for its additional financial support SMI-2013 and are also sincerely thankful to the Department of Chemical and Biomolecular Engineering of The University of Melbourne for providing the facilities and all the necessary tools to conduct this work and produce this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Safi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safi, C., Liu, D.Z., Yap, B.H.J. et al. A two-stage ultrafiltration process for separating multiple components of Tetraselmis suecica after cell disruption. J Appl Phycol 26, 2379–2387 (2014). https://doi.org/10.1007/s10811-014-0271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0271-0

Keywords

Navigation