Skip to main content

Advertisement

Log in

Key parameters for outdoor biomass production of Scenedesmus obliquus in solar tracked photobioreactors

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The biomass productivity of Scenedesmus obliquus was investigated outdoors during all seasons in solar tracked flat panel photobioreactors (PBR) to evaluate key parameters for process optimization. CO2 was supplied by flue gas from an attached combined block heat and power plant. Waste heat from the power plant was used to heat the culture during winter. The parameters pH, CO2, and inorganic salt concentrations were automatically adjusted to nonlimiting levels. The optimum biomass concentration increased directly with the photosynthetic active radiation (PAR) from 3 to 5 g dry weight (DW) L−1 for a low PAR of 10 mol photons m−2 day−1 and high PAR of 40–60 mol photons m−2 day−1, respectively. The annual average biomass yield (photosynthetic efficiency) was 0.4 ± 0.5 g DW mol−1 photons. However, biomass yields of 1.5 g DW mol−1 photons close to the theoretical maximum were obtained at low PAR. The productivity (including the night biomass losses) ranged during all seasons from −5 up to 30 g DW m−2 day−1 with a mean productivity of 9 ± 7 g DW m−2 day−1. Low night temperatures of the culture medium and elevated day temperatures to the species-specific optimum increased the productivity. Thus, continuous regulation of the biomass concentration and the culture temperature with regard to the fluctuating weather conditions is essential for process optimization of outdoor microalgal production systems in temperate climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Ren Sust Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Carvalho A, Silva S, Baptista J, Malcata F (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  CAS  PubMed  Google Scholar 

  • Cornet J-F (2010) Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chem Eng Sci 65:985

    Article  CAS  Google Scholar 

  • Cornet J-F, Dussap C-G (2009) A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol Prog 25:424–435

    Article  CAS  PubMed  Google Scholar 

  • Csőgör Z, Herrenbauer M, Schmidt K, Posten C (2001) Light distribution in a novel photobioreactor—modelling for optimization. J Appl Phycol 13:325–333

    Article  Google Scholar 

  • Cuaresma Franco M, Buffing M, Janssen M, Vílchez Lobato C, Wijffels R (2012) Performance of Chlorella sorokiniana under simulated extreme winter conditions. J Appl Phycol 24:693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104:352–359

    Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Grobbelaar J (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598

    Article  CAS  Google Scholar 

  • Grobbelaar J (2009) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21:489–492

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7:497–506

    Article  Google Scholar 

  • Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9pp

    Google Scholar 

  • Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass culture of microalgae: areal density as an important factor for achieving maximal productivity. Biomass 15:211–221

    Article  Google Scholar 

  • Hindersin S, Leupold M, Kerner M, Hanelt D (2013) Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. Bioproc Biosyst Eng 36:345–355

    Article  CAS  Google Scholar 

  • Ho SH, Lu WB, Chang JS (2012) Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous Scenedesmus obliquus CNW-N: statistical optimization of CO2 feeding, illumination, and operation mode. Bioresour Technol 105:106–113

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Hu ZY, Cohen Z, Richmond A (1997) Enhancement of eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Eur J Phycol 32:81–86

    Article  Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Article  Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  PubMed  Google Scholar 

  • Jimenez C, Cosso BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221:331–345

    Article  Google Scholar 

  • Kliphuis AM, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hu HY, Gan K, Yang J (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp LX1 under different kinds of nitrogen sources. Ecol Eng 36:379–381

    Article  Google Scholar 

  • Ma X, Chen KW, Lee YK (1997) Growth of Chlorella outdoors in a changing light environment. J Appl Phycol 9:425–430

    Article  CAS  Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 36:717–720

    Article  CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36

    Article  CAS  PubMed  Google Scholar 

  • Negoro M, Shioji N, Ikuta Y, Makita T, Uchiumi M (1992) Growth characteristics of microalgae in high-concentration CO2 gas, effects of culture medium trace components, and impurities thereon. Appl Biochem Biotechnol 34–35:681–692

    Article  Google Scholar 

  • Negoro M, Shioji N, Miyamoto K, Micira Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28–29:877–886

    Article  PubMed  Google Scholar 

  • Petkov G, Ivanova A, Iliev I, Vaseva I (2012) A critical look at the microalgae biodiesel. Eur J Lipid Sci Technol 114:103–111

    Article  CAS  Google Scholar 

  • Pruvost J, Cornet JF, Goetz V, Legrand J (2012) Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis. Biotechnol Prog 28:699–714

    Article  CAS  PubMed  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation—verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    Article  CAS  PubMed  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2. doi:10.1063/1.3294480

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Article  Google Scholar 

  • Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K (2011) Evaluation of electro-coagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329

    Article  CAS  PubMed  Google Scholar 

  • Weyer K, Bush D, Darzins A, Willson B (2010) Theoretical maximum algal oil production. Bioenergy Res 3:204–213

    Article  Google Scholar 

  • Wiley PE, Brenneman KJ, Jacobson AE (2009) Improved algal harvesting using suspended air flotation. Water Environ Res 81:702–708

    Article  CAS  PubMed  Google Scholar 

  • Williams PJB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are dedicated to Jens Oldeland from the Institute of Biodiversity, Evolution and Ecology of Plants, University of Hamburg, for the helpful hints on the principal component analysis. Many thanks to Dirk Warnecke for comments about the manuscript. The study was funded by the Federal Ministry of Economy and Technology and the city of Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hindersin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 53 kb)

ESM 2

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hindersin, S., Leupold, M., Kerner, M. et al. Key parameters for outdoor biomass production of Scenedesmus obliquus in solar tracked photobioreactors. J Appl Phycol 26, 2315–2325 (2014). https://doi.org/10.1007/s10811-014-0261-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0261-2

Keywords

Navigation