Skip to main content
Log in

Plant growth promoting activity of seaweed liquid extracts produced from Macrocystis pyrifera under different pH and temperature conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Most commercial algal extracts are produced from brown algae by alkaline hydrolysis; however, little scientific information has been published regarding the details of the production process. In this research, we have investigated the effect of pH (pH 8–12) and temperature (40, 60, and 80 °C) on liquid extract production from the brown alga Macrocystis pyrifera. Production conditions influenced the physicochemical characteristics of the final product as the extract viscosity increased with increasing pH and temperature to a maximum which occurred at pH 10 and 80 °C. This suggests that at higher pH conditions, alginate and other polysaccharides were extracted. All the extracts obtained promoted growth of tomato plants (Solanum lycopersicum) and adventitious root formation in the mung bean cutting bioassay (Vigna radiata), as the pH process was increased during the production of the liquid extracts. The highest auxin-type activity was obtained with the extract produced at pH 11 and 80 °C, while the fastest tomato seedling growth was achieved with the extract produced at pH 12 and 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avery GS Jr, Berger J, Shalucha B (1941) The total extraction of free auxin and auxin precursor from plant tissue. Am J Bot 28:596–607

    Article  CAS  Google Scholar 

  • Avery GS Jr, Berger J, Shalucha B (1942) Total auxin extraction from wheat. Am J Bot 29:612–616

    Article  CAS  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol 48:51–66

    Article  CAS  Google Scholar 

  • Bartels D, Ramanjulu S (2005) Drought and salt tolerance in plants. Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Blunden G (1991) Agricultural uses of seaweeds and seaweed extracts. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. John Wiley & Sons, London, pp 61–81

    Google Scholar 

  • Blunden G, Smith BE, Irons MW, Yang MH, Roch OG, Patel AV (1993) Betaines and tertiary sulphonium compounds from 62 species of marine algae. Biochem Syst Ecol 20:373–388

    Article  Google Scholar 

  • Blunden G, Jenkins T, Liu Y (1997) Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J Appl Phycol 8:535–543

    Article  Google Scholar 

  • Booth E (1969) The manufacture and properties of liquid seaweed extracts. Proc Int Seaweed Symp 6:655–662

    Google Scholar 

  • Chandía NP, Matsuhiro B, Mejías E, Moenne A (2004) Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction. J Appl Phycol 16:127–133

    Article  Google Scholar 

  • Chen T, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Plant Biol 5:250–257

    CAS  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Craigie JS, MacKinnon SL, Walter JA (2007) Liquid seaweed extracts identified using 1HNMR profiles. J Appl Phycol 22:489–494

    Google Scholar 

  • Crouch IJ, van Staden J (1992) Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296

    Article  Google Scholar 

  • Crouch IJ, van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29

    Article  CAS  Google Scholar 

  • Crouch IJ, Smith MT, van Staden J, Lewis MJ, Hoad GV (1992) Identification of auxins in a commercial seaweed concentrate. J Plant Physiol 13:590–594

    Article  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Amer Zool 41:758–769

    Article  CAS  Google Scholar 

  • Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297

    Article  PubMed  CAS  Google Scholar 

  • Haug A, Larsen B, Smidsröd O (1963) The degradation of alginates at different pH values. Act Chem Scan 17:1466–1468

    Article  CAS  Google Scholar 

  • Haug A, Larsen B, Smidsröd O (1967) Alkaline degradation of alginate. Act Chem Scan 21:2859–2870

    Article  CAS  Google Scholar 

  • Hernández-Carmona G, Arvizu-Higuera DL, Rodríguez-Montesinos YE (1996) Efecto de la temperatura y tiempo de extracción en el proceso de obtención de alginato de sodio a partir de Macrocystis pyrifera. Cienc Mar 22:511–521

    Google Scholar 

  • Hernández-Carmona G, McHugh DJ, Arvizu-Higuera DL, Rodríguez-Montesinos YE (1999) Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. J Appl Phycol 10:507–513

    Article  Google Scholar 

  • Hernández-Carmona G, Garcia O, Robledo D, Foster M (2000) Restoration techniques for Macrocystis pyrifera populations at the southern limit of their distribution in México. Bot Mar 43:273–284

    Article  Google Scholar 

  • Hernández-Carmona G, Robledo D, Serviere-Zaragoza E (2001) Effect of nutrient availability on Macrocystis pyrifera recruitment survival near its southern limit of Baja California. Bot Mar 44:221–229

    Article  Google Scholar 

  • Holme HK, Davidsen L, Kristiansen A, Smidsrød O (2008) Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydr Polym 73:656–664

    Article  CAS  Google Scholar 

  • Iwasaki I, Matsubara Y (2000) Purification of pectate oligosaccharides showing root-growth-promoting activity in lettuce using ultrafiltration and nanofiltration membranes. Biosci Bioeng 89:495–497

    Article  CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Mundaya N, Jithesh MN, Rayirath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Kingman AR, Moore J (1982) Isolation, purification and quantitation of several growth regulating substances in Ascophyllum nodosum (Phaeophyta). Bot Mar 25:149–154

    Article  CAS  Google Scholar 

  • Klarzynski O, Descamps V, Plesse B, Yvin JC, Kloareg B, Friting B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microbe Interact 16:115–122

    Article  PubMed  CAS  Google Scholar 

  • Kumari R, Kaur I, Bhatnagar AK (2011) Effect of aqueous extract of Sargassum johnstonii Setchell Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J Appl Phycol 23:623–633

    Article  Google Scholar 

  • Lobban CS, Harrisson PJ (1997) Seaweed ecology and physiology. Cambridge University Press, London

    Google Scholar 

  • MacKinnon SA, Craft CA, Hiltz D, Ugarte R (2010) Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J Appl Phycol 22:489–494

    Article  Google Scholar 

  • Pardee KI, Ellis P, Bouthillier M, Towers GHN, French CJ (2004) Plant virus inhibitors from marine algae. Can J Bot 82:304–309

    Article  Google Scholar 

  • Reinecke DM (1999) 4-Chloroindole-3-acetic acid and plant growth. Plant Growth Regul 27:3–13

    Article  CAS  Google Scholar 

  • Rodríguez-Montesinos YE, Hernández-Carmona G (1991) Variación estacional y geográfica de la composición química de Macrocystis pyrifera en la Costa Occidental de Baja California. Cienc Mar 17:91–107

    Google Scholar 

  • Sanderson KJ, Jameson PE, Zabkiewicz JA (1987) Auxin in a seaweed extract: Identification and quantification of indole-3-acetic acid by gas chromatography–mass spectrometry. J Plant Physiol 129:363–367

    Article  CAS  Google Scholar 

  • Serraj R, Sinclair T (2002) Osmolyte accumulation: can it really help increase in crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Stephenson WA (1974) Seaweed in agriculture and horticulture. Rateavers Press, USA

    Google Scholar 

  • Stirk WA, van Staden J (1997) Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 8:503–508

    Article  Google Scholar 

  • Stirk WA, van Staden J (2006) Seaweed products as biostimulants in agriculture. In: Critchley AT, Ohno M, Largo DB (eds) World seaweed resources: an authoritative reference system. ETI Bioinformatics, Amsterdam

    Google Scholar 

  • Stirk WA, Ördög V, van Staden J, Jäger K (2002) Cytokinin- and auxin-like activity in Cyanophyta and microalgae. J Appl Phycol 14:215–221

    Article  CAS  Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novak O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39

    Article  CAS  Google Scholar 

  • Tarakhovskaya ER, Maslov Yu I, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physl 54:163–170

    Article  CAS  Google Scholar 

  • Turan M, Köse C (2004) Seaweed extracts improve copper uptake of grapevine. Acta Agric Scand B 54:213–220

    CAS  Google Scholar 

  • Ueda M, Bandurski RS (1969) A quantitative estimation of alkali-labile indole-3-acetic acid compounds in dormant and germinating maize kernels. Plant Physiol 44:1175–1181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whapham CA, Blunden G, Jenkins T, Hankins SD (1993) Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J Appl Phycol 5:231–234

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Iwamoto Y, Kitamura Y, Oda T, Muramatsu T (2003) Root-growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants. Biosci Biotechnol Biochem 67:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Plant Biol 6:441–445

    CAS  Google Scholar 

Download references

Acknowledgments

The University of KwaZulu-Natal, Consejo Nacional de Ciencia y Tecnología (Fellowship # 37647), Fondo mixto CONACYT-QUINTANA ROO Project # QROO-2011-C01-174594, Programa Institucional de Formación de Investigadores (PIFI), Programa de Becas de Exclusividad (COFAA-IPN), Estimulo al Desempeño de los Investigadores (EDI-IPN), and Secretaria de Investigación y Postgrado of IPN (Project #s 20090563, 20100889, and 20111212) are thanked for financial support. We wish to thank MCs Ivonne Cruz-Santander and MCs Renato Borras-Chavez for suggestions to the manuscript, Mr. Kim Siewers for English editing, and two anonymous reviewers that significantly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Hernández-Carmona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briceño-Domínguez, D., Hernández-Carmona, G., Moyo, M. et al. Plant growth promoting activity of seaweed liquid extracts produced from Macrocystis pyrifera under different pH and temperature conditions. J Appl Phycol 26, 2203–2210 (2014). https://doi.org/10.1007/s10811-014-0237-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0237-2

Keywords

Navigation