Skip to main content

Advertisement

Log in

Spirulina: possible pharmacological evaluation for insulin-like protein

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia, hyperlipidemia, hyperaminoacidemia, and hypoinsulinemia that leads to reduction in both insulin secretion and insulin action. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina is a naturally occurring freshwater cyanobacterium, enriched with proteins and essential nutrients. Treatment of diabetic rats with crude, aqueous extract, ethanolic extract, and insulin-like protein of Spirulina successfully ameliorated diabetic complications by increasing body weight and significantly decreasing the levels of blood glucose, glycosylated hemoglobin, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, total bilirubin, serum creatinine, serum uric acid, and blood urea nitrogen (p < 0.0001). Comparatively, the crude extract and insulin-like protein were found to be more effective than the aqueous and ethanolic extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altan VM (2003) The pharmacology of diabetic complications. Current Med Chem 10:1317–1327

    Article  CAS  Google Scholar 

  • Annapurna V (1991) Bioavailability of Spirulina carotene in pre-school children. J Clin Biochem Nut 10:145–151

    Article  Google Scholar 

  • Anwer R, Khursheed S, Fatma T (2012) Detection of immunoactive insulin in Spirulina. J Appl Phycol 24:583–591

    Article  CAS  Google Scholar 

  • Babu ML (1995) Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer 24:197–202

    Article  Google Scholar 

  • Bannon P (1982) Effect of pH on the elimination of the labile fraction of glycosylated hemoglobin. Clin Chem 28:2183–2183

    PubMed  CAS  Google Scholar 

  • Becker E, Jakober B, Luft D, Schmulling RM (1986) Clinical and biochemical evaluations of the alga Spirulina with regard to its application in the treatment obesity. A double-blind cross-over study. Nutr Rep Internal 33:565–574

    Google Scholar 

  • Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    Article  PubMed  CAS  Google Scholar 

  • Best CH (1924) Recent work on insulin. Endocrinol 1:617–629

    Article  Google Scholar 

  • Best CH, Scott MA (1923) Possible sources of insulin. J Metab Res 3:177–179

    CAS  Google Scholar 

  • Coimbra TC, Danni FF, Blotta RM, da Periara CA, Guedes MD, Graf RG (1992) Plants employed in the treatment of diabetes mellitus; results of an ethnopharmacological survey in Porto Alegre, Brazil. Fitoterapia 63(4):320–322

    Google Scholar 

  • Collip JB (1923) Glucokinin. A new hormone present in plant tissue. Preliminary paper. J Biol Chem 56:513–543

    CAS  Google Scholar 

  • Gabbay KH (1976) Glycosylated haemoglobin and diabetic control. New Engl J Med 95:443–454

    Article  Google Scholar 

  • Gustafson KR, Cardellina JH II, Fuller RW, Weislow OS, Kiser RK, Snader KM, Gregory ML, Patterson, Boyd MR (1989) AIDS antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 8:1254–1258

    Article  Google Scholar 

  • Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87

    Article  PubMed  CAS  Google Scholar 

  • Hayashi O, Katoh T, Okuwaki Y (1994) Enhancement of antibody production in mice by dietary Spirulina platensis. J Nutr Sci Vitaminol 40:431–441

    Article  PubMed  CAS  Google Scholar 

  • Jenkins DJA, Kendall CWC, Vidgen E (2001) High protein diets in hyperlipidemia: effect of wheat gluten on serum lipids, uric acid, and renal function. Am J Clin Nutr 74:57–63

    PubMed  CAS  Google Scholar 

  • Kapoor R, Mehta U (1993) Effect of supplementation of blue green algae on outcome of pregnancy of rats. Plant Food Hum Nutr 43:131–48

    Google Scholar 

  • Kar A, Choudhary BK, Bandyopadhyay NG (2003) Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic Rats. J Ethnopharmacol 84:105–108

    Article  PubMed  Google Scholar 

  • Kato T, Takemoto K, Katayama K, Kuwahara Y (1984) Effect of Spirulina platensis to alimentary hypercholesterolemia in rat. Jpn Nat Food Assoc J 37:323

    Article  Google Scholar 

  • Khanna P, Nag TN, Chandrajaia S, Mohan S (1976) Process for isolation of insulin from plant source. US Patent 3,945,988

  • Khursheed S, Anwer R, Zutshi S, Fatma T (2012) Screening of photosynthetic O2 evolving prokaryotes for insulin-like antigen. J Phycol 48:243–245

    Article  CAS  Google Scholar 

  • Khuwaja AK, Rafique G, White F, Azam SI (2004) Macrovascular complications and their associated factors among persons with type 2 diabetes in Karachi, Pakistan—a multi-center study. J Pak Med Assoc 54:60–66

    PubMed  CAS  Google Scholar 

  • Kim MH, Kim WY (2005) The change of lipid metabolism and immune function caused by antioxidant material in the hypercholesterolemin elderly women in Korea. Korean J Nutr 38:67–75

    CAS  Google Scholar 

  • Koening RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A (1976) Correlation of glucose regulation and hemoglobin A1C in diabetes mellitus. New Eng J Med 295:417–420

    Article  Google Scholar 

  • Layam A, Reddy CLK (2006) Antidiabetic property of Spirulina. Diabeto Croa 35:29–33

    Google Scholar 

  • Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Current Med Chem 13:1203–18

    Article  CAS  Google Scholar 

  • Mani UV, Desai S, Iyer UM (2000) Studies on the long-term effect of Spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Nutra Funct Med Foods 2:25–32

    Article  Google Scholar 

  • Mani UV, Iyer UM, Nayak US (2002) Hypocholesterolemic effect of Spirulina in patients with hyperlipidemic nephrotic syndrome. J Med Food 5:91–96

    Article  PubMed  Google Scholar 

  • Mohan V, Radhika G, Sathya RM, Tamil SR, Ganesan A, Sudha V (2009) Dietary carbohydrates, glycaemic load, food groups and newly detected type 2 diabetes among urban Asian Indian population in Chennai, India (Chennai Urban Rural Epidemiology Study 59). Br J Nutr 102:1498–1506

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee K, Ghosh NC, Datta T (1972) Coccinia indica Linn. As potential hypoglycemic agent. Indian J Exp Biol 10:347–349

    PubMed  CAS  Google Scholar 

  • Nakaya N, Homma Y, Goto Y (1988) Cholesterol lowering effect of Spirulina. Nutr Rep Int 37:1329–1337

    CAS  Google Scholar 

  • Oliveira AEA, Machado OLT, Gomes VM, Xavier-Neto J, Pereira AC, Vieira JGH (1999) Jack bean seed coat contains a protein with complete sequence homology to bovine insulin. Protein Pept Lett 6:15–21

    CAS  Google Scholar 

  • Pandey JP, Tiwari A, Mishra G, Mishra RM (2011) Role of Spirulina maxima in the control of blood glucose levels and body weight in streptozotocin induced diabetic male Wistar rats. J Algal Biomass Utln 2(4):35–37

    Google Scholar 

  • Parikh P, Mani U, Iyer U (2001) Role of Spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus. Dig Dis Sci 4:193–199

    Google Scholar 

  • Park JY, Kim WY (2003) The effect of Spirulina on lipid metabolism, antioxidant capacity and immune function in Korean elderly. Korean J Nutr 36:287–297

    Google Scholar 

  • Qishen P (1988) Enhancement of endonuclease activity and repair DNA synthesis by polysaccharide of Spirulina platensis. Acta Genet Sinica 15:374–381

    Google Scholar 

  • Ramachandran A, Snehalatha C, Kapur A (2001) Diabetes epidemiology study group in India (DESI). High prevalence of diabetes and impaired glucose tolerance in India: national urban diabetes survey. Diabetologia 44:1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy A, Premakumari S (1996) Effect of supplementation of Spirulina on hypercholesterolemic patients. J Food Sci Technol 33:124–127

    Google Scholar 

  • Rodriguez-Hernandez A, Ble-Castillo JL, Juares-Oropeza MA, Diazagoya JC (2001) Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes. Life Sci 69:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Saifi AQ, Shinde S, Kavishwar WK, Gupta SR (1971) Some aspects of phytochemistry and hypoglycemic actions of Pterocarpus marsupium. J Res Indian Med 62:205–207

    Google Scholar 

  • Schwartz J, Shklar G (1988) Prevention of experimental oral cancer by extracts of SpirulinaDuraliella algae. Nutr Cancer 11:127–134

    Article  PubMed  CAS  Google Scholar 

  • Silva LB, Santos SSS, Azevedo CR (2002) The leaves of green plants as well as a cyanobacterium, red alga, and fungi contain insulin-like antigens. Braz J Med Biol Res 35:297–303

    Article  PubMed  CAS  Google Scholar 

  • Vats V, Yadav SP, Gover JK (2004) Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol 90:155–160

    Article  PubMed  CAS  Google Scholar 

  • Venancio TM, Oliveira AE, Silva LB, Machado OL, Fernandes KV, Xavier-Filho J (2003) A protein with amino acid sequence homology to bovine insulin is present in the legume Vigna unguiculata (cowpea). Braz J Med Biol Res 36:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman LV (1998) Spirulina: global reach of a health care product. Souvenir, IFCON 1998, 4th International Food Convention, p 175

  • Wang Y, Chang CF, Chou J, Chen HL, Deng X, Harvey BK, Cadet JL, Bickford PC (2005) Dietary supplementation of with blueberries, spinach, or Spirulina reduces ischemic brain damage. Exp Neurol 193:75–84

    Article  PubMed  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  • Winter J, Neubauer P, Glockshuber R, Rudolph R (2001) Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J Biotechnol 84:175–185

    Article  PubMed  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution á l’étude d’une cyanophyceé. Influence de divers facteursphysiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima. Ph.D. Thesis, Université de Paris

  • Zhang XW, Zhang YM, Chen F (1999) Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem 34:477–481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to CFTRI, Mysore, India, for providing the test strain and to UGC and CCRUM, India, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Fatma.

Additional information

This paper was presented at the eighth Asia-Pacific Conference on Algal Biotechnology, Adelaide, Australia, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anwer, R., Alam, A., Khursheed, S. et al. Spirulina: possible pharmacological evaluation for insulin-like protein. J Appl Phycol 25, 883–889 (2013). https://doi.org/10.1007/s10811-012-9924-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9924-z

Keywords

Navigation