Skip to main content
Log in

Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The purpose of this study was to explore efficient methods of harvesting the microalga Phaeodactylum tricornutum. Natural sedimentation experiments, performed at different light and temperature conditions, did not yield significant improvements in efficiency even after 1 week. When alkalinity-induced flocculation was performed, both the flocculation efficiency and the concentration factor dramatically improved at pH = 9.75 (0.5–0.7 units over the original pH of the culture) after 10 min settling time. Sedimentation rates are documented at pH ranging between pH 9.75 and 11.0. The results of the application of two conventional flocculants used in wastewater treatment, polyaluminium chloride and aluminium sulphate, are also presented. Chitosan was also used as a natural flocculating agent to improve possible contamination problems in the downstream process. pH was adjusted in order to determine optimum flocculation efficiency of chitosan in combination with a high concentration factor. Satisfactory results were found with chitosan at an adjusted pH of 9.9 using concentrations as low as 20 mg L−1, after testing a flocculant range of 5–200 mg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexeyev V (1979) Quantitative analysis. Mir Publishers, Moscow

    Google Scholar 

  • Alonso DL, Belarbi EH, Fernandez-Sevilla JM, Rodrıguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    Article  PubMed  CAS  Google Scholar 

  • Ayoub GM, Lee S, Koopman B (1986) Seawater-induced algal flocculation. Water Res 20:1265–1271

    Article  CAS  Google Scholar 

  • Blanchemain A, Grizeau D (1999) Increased production of eicosapentaenoic acid by Skeletonema costatum cells after decantation at low temperature. Biotechnol Technol 13:497–501

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the dynamic nature and multi-lineage evolutionary history of diatom genomes. Nature 456:239–244

    Article  PubMed  CAS  Google Scholar 

  • Buelna G, Bhattarai KK, de la Noue J, Taiganides EP (1990) Evaluation of various flocculants for the recovery of algal biomass growth on pig-waste. Biol Wastes 31:211–222

    Article  CAS  Google Scholar 

  • Carvalho A, Meireles L, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    PubMed  CAS  Google Scholar 

  • Chen CY, Yeh KL, Alsyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Biores Technol 102:71–81

    Article  CAS  Google Scholar 

  • Csordas A, Wang JK (2004) An integrated photobioreactor and foam fractionation unit for the growth and harvest of Chaetoceros spp. in open systems. Aquacult Eng 30:15–30

    Article  Google Scholar 

  • Danquah MK, Gladman B, Moheimani N, Forde GM (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151:73–78

    Article  CAS  Google Scholar 

  • Divakaran R, Sivasankara Pillai VN (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • Dziubek AM, Kowal AL (1984) Effect of magnesium hydroxide on chemical treatment of secondary effluent under alkaline conditions. In: Proceedings of water reuse symposium III, American Waterworks Association Research Foundation, San Diego

  • Elmaleh S, Coma J, Grasmick A, Bourgade L (1991) Magnesium induced algal flocculation in a fluidized bed. Wat Sci Technol 23:1695–1702

    CAS  Google Scholar 

  • Elmaleh S, Yahi H, Coma J (1996) Are flocculants required in a flocculant process? Env Eng Policy 1:97–102

    Article  Google Scholar 

  • Graves EC, Schnelle KB Jr, Wilson DJ (1979) Experimental verification of a mathematical model for quiescent settling of a flocculating slurry. Sep Sci Technol 14:923–933

    Article  CAS  Google Scholar 

  • Gualtieri P, Barsanti L, Passarelli V (1988) Chitosan as flocculant for concentrating Euglena gracilis cultures. Annal Instt Pasteur/Microbiol 139:717–726

    Article  CAS  Google Scholar 

  • Gudin C, Thepenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Proc 6:73–110

    CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Harith ZT, Yusoff FM, Mohamed MS, Din MSM, Ariff AB (2009) Effect of different flocculants on the flocculation performance microalgae, Chaetoceros calcitrans, cells. Afr J Biotechnol 8:5971–5978

    CAS  Google Scholar 

  • Horiuchi JI, Ohba I, Tada K, Kobayashi M, Kanno T, Kishimoto M (2003) Effective cell harvesting of the halotolerant microalgae Dunaliella tertiolecta with pH control. J Biosci Bioeng 95:412–415

    PubMed  CAS  Google Scholar 

  • Kaseamchochoung C, Lertsutthiwong P, Phalakornkule C (2006) Influence of chitosan characteristics and environmental conditions on flocculation of anaerobic sludge. Water Environ Res 78:2210–2216

    Article  PubMed  CAS  Google Scholar 

  • Kerr RA (1998) The next oil crisis looms large and perhaps close. Science 281:1128–1131

    Article  CAS  Google Scholar 

  • Kim S-G, Choi A, Ahn C-Y, Park C-S, Park Y-H, Oh H-M (2005) Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett Appl Microbiol 40:190–194

    Article  PubMed  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313

    Article  Google Scholar 

  • Lavoie A, de la Note J (1983) Harvesting microalgae with chitosan. J World Maricult Soc 14:685–694

    Article  CAS  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Leentvaar J, Rebhun M (1982) Effect of magnesium and calcium precipitation on coagulation flocculation with lime. Wat Res 16:655–662

    Article  CAS  Google Scholar 

  • McGarry MG (1970) Algal flocculation with aluminum sulfate and polyelectrolytes. J Wat Poll Cont Fed 42:191–201

    Google Scholar 

  • Merrill DT, Jorden RM (1975) Lime-induced reactions in municipal waters. J Wat Pollut Cont Fed 47:2783–2808

    CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • National Algal Biofuels Technology Roadmap (2010). Available at www1.eere.energy.gov/

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437

    Article  Google Scholar 

  • Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22:349–355

    Article  CAS  Google Scholar 

  • Rodolfi L et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotech Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Sander K, Murti GS (2010) The Life cycle analyses of algae biodiesel. Int J Life Cycle 15:704–714

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruss O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Semerjian L, Ayoub GM (2003) High-pH–magnesium coagulation–flocculation in wastewater treatment. Adv Env Res 7:389–403

    Article  CAS  Google Scholar 

  • Spilling K, Seppälä J, Tamminen T (2010) Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J Appl Phycol. doi:10.1007/s10811-010-9616-5

  • Spolaore O, Joannis-Cassan C, Duran E, Isambert A (2006) A commercial application of micro-algae. J Bioscie Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Strand SP, Varum KM, Kjetill O (2003) Interactions between chitosans and bacterial suspensions: adsorption and flocculation. Colloids Surf B Biointerfaces 27:71–81

    Article  CAS  Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation—verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    Article  PubMed  CAS  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Article  Google Scholar 

  • Walne PR (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fishery Investigations. Series 2, London. pp 26–62

  • Wang LK, Hung Y-T, Shammas NK (2005) Physicochemical treatment processes. Handbook of environmental engineering, vol 3. Humana Press, New Jersey, p 113

    Book  Google Scholar 

  • Yahi H, Elmaleh S, Coma J (1994) Algal flocculation-sedimentation by pH increase in a continuous reactor. Wat Sci Technol 30:259–267

    CAS  Google Scholar 

  • Zeng D, Wu J, Kennedy JF (2008) Application of a chitosan flocculant to water treatment. Carbohy Polym 71:135–139

    Article  CAS  Google Scholar 

  • Zhao YQ (2003) Correlations between floc physical properties and optimum polymer dosage in alum sludge conditioning and dewatering. Chem Eng J 92:227–235

    Article  CAS  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Spanish Ministry of Science and Innovation for project ENE2007-65033 and to the Excma. Diputacio de Tarragona for the “Biomass Fuels” project under the microalgae research programme for the partial funding of this research. The authors also wish to thank Dr. Ester Clavero from IREC for her valuable work with the algal cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Salvadó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şirin, S., Trobajo, R., Ibanez, C. et al. Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 24, 1067–1080 (2012). https://doi.org/10.1007/s10811-011-9736-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9736-6

Keywords

Navigation