Skip to main content
Log in

Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellateProrocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5′ end, as judged by agarose gel electrophoresis and primer extension experiments.Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baroin A, Perasso R, Qu LH, Brugerolle G, Bachellerie J-P, Adoutte A (1988) Partial phylogeny of unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl Acad Sci USA 85:3474–3478

    PubMed  Google Scholar 

  • Brosius J, Dull TJ, Noller HF (1980) Complete nucleotide sequence of a 23S ribosomal RNA gene fromEscherichia coli. Proc Natl Acad Sci USA 77:201–204

    Google Scholar 

  • Cavalier-Smith T (1981) The origin and early evolution of the eukaryotic cell. Soc Gen Microbiol Symp 32:33–84

    Google Scholar 

  • Corliss JO (1984) The kingdom Protista and its 45 phyla. BioSystems 17:87–126

    Article  PubMed  Google Scholar 

  • Dodge JD (1965) Chromosome structure in the dinoflagellates and the problem of the mesokaryotic cell. Excerpta Med Int Congr Ser 91:339–341

    Google Scholar 

  • Ellis RE, Sulston JE, Coulson AR (1986) The rDNA ofC. elegans: sequence and structure. Nucleic Acids Res 14:2345–2364

    PubMed  Google Scholar 

  • Felsenstein J (1988) Perils of molecular introspection. Nature 335:118

    Article  Google Scholar 

  • Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223–257

    Article  Google Scholar 

  • Fitch WM (1981) A non-sequential method for constructing trees and hierarchical classifications. J Mol Evol 18:30–37

    Article  PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    PubMed  Google Scholar 

  • Gourret JP (1978) Description et interpretation des structurés observés dans les bactéroides deRhizobium. Biol Cell 32:299–306

    Google Scholar 

  • Gressel J, Bermann T, Cohen N (1975) Dinoflagellate ribosomal RNA; an evolutionary relic? J Mol Evol 5:307–313

    Article  PubMed  Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin M (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84:5823–5827

    PubMed  Google Scholar 

  • Gutell RR, Fox EF (1988) A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res 16(suppl):r175-r269

    PubMed  Google Scholar 

  • Hassouna N, Michot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    PubMed  Google Scholar 

  • Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152:232–238

    Article  PubMed  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Herzog M, Maroteaux L (1986) Dinoflagellate 17S rRNA sequence inferred from the gene sequence: evolutionary implications. Proc Natl Acad Sci USA 83:8644–8648

    Google Scholar 

  • Herzog M, Soyer MO (1981) Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive speciesProrocentrum micans E. Eur J Cell Biol 23:295–302

    PubMed  Google Scholar 

  • Herzog M, Soyer MO (1983) The native structure of dinoflagellate chromosomes and their stabilisation by Ca2+ and Mg2+ cations. Eur J Cell Biol 34:33–41

    Google Scholar 

  • Herzog M, Soyer MO, de Marcillac GD (1982) A high level of thymine replacement by 5-hydroxymethyluracil in nuclear DNA of the primitive dinoflagellateProrocentrum micans E. Eur J Cell Biol 27:151–155

    PubMed  Google Scholar 

  • Herzog M, von Boletsky S, Soyer MO (1984) Ultrastructural and biochemical nuclear aspects of eukaryote classification: independent evolution of the dinoflagellates as a sister group of the actual eukaryotes? Origins Life 13:205–215

    Article  Google Scholar 

  • Hinnebush AG, Klotz LC, Immergut E, Loeblich AR III (1980) Deoxyribonucleic acid sequence organisation in the genome of the dinoflagellateCrypthecodinium cohnii. Biochemistry 19:1744–1755

    Article  PubMed  Google Scholar 

  • Jarsch M, Bock A (1985) Sequence of the rRNA gene from the archaebacteriumMethanococcus vannielii: evolutionary and functional implications. Mol Gen Genet 200:305–312

    Article  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions. J Mol Evol 16:111–120

    Article  PubMed  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    PubMed  Google Scholar 

  • Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191

    PubMed  Google Scholar 

  • Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331:184–186

    PubMed  Google Scholar 

  • Lenaers G, Nielsen H, Engberg J, Herzog M (1988) The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution. BioSystems 21:215–222

    Article  PubMed  Google Scholar 

  • Liu MH, Reddy R, Henning D, Spector D, Busch H (1984) Primary and secondary structure of dinoflagellate U5 small nuclear RNA. Nucleic Acids Res 12:1529–1542

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Margulis L, Schwartz KV (1982) Five kingdoms: an illustrated guide to the phyla of life on earth. Freeman, San Francisco

    Google Scholar 

  • Maroteaux L, Kahama C, Mory Y, Groner Y, Revel M (1983) Sequences involved in the regulated expression of the human interferon-B1 gene in recombinant SV40 DNA vectors replicating in monkey cells. EMBO J 2:325–332

    PubMed  Google Scholar 

  • Maroteaux L, Herzog M, Soyer-Gobillard MO (1985) Molecular organization of dinoflagellate ribosomal DNA: evolutionary implications of the deduced 5.8S rRNA secondary structure. BioSystems 18:307–319

    Article  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–565

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 5:20–78

    Google Scholar 

  • Michot B, Bachellerie JP (1987) Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 69:11–23

    Article  PubMed  Google Scholar 

  • Michot B, Hassouna N, Bachellerie JP (1984) Secondary structure of mouse 28S rRNA and general model for the folding of the large RNA in eukaryotes. Nucleic Acids Res 12:4259–4279

    PubMed  Google Scholar 

  • Otsuka T, Nomiyama H, Yoshida H, Kukita T, Kuara S, Sakaki Y (1983) Complete nucleotide sequence of the 26S rRNA gene ofPhysarum polycephalum: its significance in gene evolution. Proc Natl Acad Sci USA 80:3163–3167

    Google Scholar 

  • Ozaki T, Hoshikawa Y, Iida Y, Iwabuchi M (1984) Sequence analysis of the transcribed and 5′ non-transcribed regions of the ribosomal RNA gene inDictyostelium discoideum. Nucleic Acids Res 12:4171–4184

    PubMed  Google Scholar 

  • Qu LH (1986) Structuration et evolution de l'ARN 28S chez les eukaryotes. Etude systématique de la région 5′ terminale. Dissertation 1273. Thesis, Université Paul Sabatier, Toulouse, France

    Google Scholar 

  • Qu LH, Michot B, Bachellerie JP (1983) Improved methods for structure probing in large RNAs: a rapid heterologous sequencing approach is coupled to the direct mapping of nuclease accessible sites. Implication to the 5′ terminal domains of eukaryotic 28S rRNA. Nucleic Acids Res 17:5903–5920

    Google Scholar 

  • Rae PMM (1970) The nature and processing of ribosomal ribonucleic acid in a dinoflagellate. J Cell Biol 46:106–113

    Article  PubMed  Google Scholar 

  • Rae PMM (1973) 5-Hydroxymethyluracil in the DNA of a dinoflagellate. Proc Natl Acad Sci USA 70:1141–1145

    PubMed  Google Scholar 

  • Rae PMM (1976) Hydroxymethyluracil in eukaryote DNA: a natural feature of the Pyrrophyta (dinoflagellates) Science 194:1062–1064

    PubMed  Google Scholar 

  • Reddy R, Spector D, Henning D, Liu MH, Busch H (1983) Isolation and partial characterization of dinoflagellate U1–U6 small RNAs homologous to rat U small nuclear RNAs. J Biol Chem 258:13965–13969

    PubMed  Google Scholar 

  • Ris H, Kubai DF (1974) An unusual mitotic mechanism in the parasitic protozoanSyndinium sp. J Cell Biol 60:702–720

    Article  PubMed  Google Scholar 

  • Rizzo PJ (1979) RNA synthesis in isolated nucleus of the dinoflagellateCrypthecodinium cohnii. J Protozool 26:290–294

    PubMed  Google Scholar 

  • Rizzo PJ (1981) Comparative aspects of basic chromatin proteins in dinoflagellates. BioSystems 14:433–444

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Sollner-Webb B, Reeder R (1979) The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription inX. laevis. Cell 18:485–499

    Article  PubMed  Google Scholar 

  • Soyer MO (1981) Presence of intranuclear microcables in the nucleoplasm of a primitive dinoflagellate. BioSystems 14:299–304

    Article  PubMed  Google Scholar 

  • Soyer MO, Herzog M (1985) The native structure of dinoflagellate chromosomes. Involvement of structural RNA. Eur J Cell Biol 36:334–342

    Google Scholar 

  • Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed) Dinoflagellates. Academic Press, New York, pp 1–15

    Google Scholar 

  • Spencer DF, Collings JC, Schnare MN, Gray MW (1987) Multiple spacer sequence in the nuclear large subunit ribosomal RNA gene ofCrithidia fasciculata. EMBO J 6:1063–1071

    Google Scholar 

  • Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87:199–229

    Article  Google Scholar 

  • Takaiwa F, Sugiura M (1982) The complete nucleotide sequence of a 23-S rRNA gene from tobacco chloroplasts. Eur J Biochem 124:13–19

    Article  PubMed  Google Scholar 

  • Takaiwa F, Oono K, Iida Y, Sugiura M (1985) The complete nucleotide sequence of a rice 25S rRNA gene. Gene 37:255–259

    Article  PubMed  Google Scholar 

  • Veldman JM, Klootwijk J, de Regt V, Planta RJ (1981) The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res 9:6935–6953

    PubMed  Google Scholar 

  • Ware VC, Tague BW, Clark CG, Gourse RL, Brand RC, Gerbi SA (1983) Sequence analysis of 28S ribosomal DNA from the amphibianXenopus laevis. Nucleic Acids Res 11:7795–7817

    PubMed  Google Scholar 

  • Werner E, Sohst S, Gropp F, Simon D, Wagner H, Kroger H (1984) Presence of poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase in the dinoflagellateCrypthecodinium cohnii. Eur J Biochem 139:81–86

    Article  PubMed  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenaers, G., Maroteaux, L., Michot, B. et al. Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA. J Mol Evol 29, 40–51 (1989). https://doi.org/10.1007/BF02106180

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02106180

Key words

Navigation