Skip to main content
Log in

Characteristics of γ-hexachlorocyclohexane biodegradation by a nitrogen-fixing cyanobacterium, Anabaena azotica

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Biodegradation of γ-hexachlorocyclohexane (lindane) by a nitrogen-fixing cyanobacterium isolated from Chinese paddy soils, Anabaena azotica 118, was investigated. Lindane with an initial concentration of 0.2 mg L−1 in the cultures had no negative effect on the chlorophyll a concentration of A. azotica after 5 d exposure. The tolerance of this cyanobacterium to lindane indicates that it has the potential to biodegrade lindane. The degradation experiments show that the percentage of lindane removal efficiency by A. azotica was 48.8% after 5 d, at an initial lindane concentration of 0.2 mg L−1 and initial A. azotica chlorophyll a concentration of 50 mg L−1. The calculated half-life was 4.78 d. Elevated culture temperature, irradiation, and usage of nitrate as the nitrogen source in the cultures could increase the biodegradation efficiency of lindane. γ-Pentachlorocyclohexene was detected as a metabolite of lindane. The ability of A. azotica to biodegrade lindane has potential use in the bioremediation for this organochlorine pesticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badea SL, Vogt C, Weber S, Danet AF, Richnow HH (2009) Stable isotope fractionation of γ-hexachlorocyclohexane (Lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria. Environ Sci Technol 43:3155–3161

    Article  PubMed  CAS  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeterior Biodegrad 61:233–239

    Article  CAS  Google Scholar 

  • Bueno M, Fillat MF, Strasser RJ, Maldonado-Rodriguez R, Marina N, Smienk H, Gómez-Moreno C, Barja F (2004) Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP + reductase. Environ Sci Pollut Res Int 11:98–106

    Article  PubMed  CAS  Google Scholar 

  • Cai QY, Mo CH, Wu QT, Katsoyiannis A, Zeng QY (2008) The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: a review. Sci Total Environ 389:209–224

    Article  PubMed  CAS  Google Scholar 

  • Castenholz RW (1988) Culturing methods for cyanobacteria. Method Enzymol 167:68–93

    Article  CAS  Google Scholar 

  • El-Bestawy EA, El-Salam AZA, El-Rahman Mansy AEH (2007) Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. Int Biodeterior Biodegrad 59:180–192

    Article  CAS  Google Scholar 

  • Jagnow G, Haider K, Ellwardt PC (1977) Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anerobic and facultative anaerobic bacteria. Arch Microbiol 115:285–292

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Gupta SK, Garg SK, Kumar A (2006) Biodegradation of hexachlorocyclohexane-isomers in contaminated soils. Soil Biol Biochem 38:2318–2327

    Article  CAS  Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61:234–238

    PubMed  CAS  Google Scholar 

  • Kuritz T, Bocanera LV, Rivera NS (1997) Dechlorination of Lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon. J Bacteriol 179:3368–3370

    PubMed  CAS  Google Scholar 

  • Li YF, Cai DJ, Singh A (1998) Technical hexachlorocyclohexane use trends in China and their impact on the environment. Arch Environ Contam Toxicol 35:688–697

    Article  PubMed  CAS  Google Scholar 

  • Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086

    Article  PubMed  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Mol Biol Res 56:482–507

    CAS  Google Scholar 

  • Nagata Y, Kamakura M, Endo R, Miyazaki R, Ohtsubo Y, Tsuda M (2006) Distribution of γ-hexachlorocyclohexane-degrading genes on three replicons in Sphingobium japonicum UT26. FEMS Microbiol Lett 256:112–118

    Article  PubMed  CAS  Google Scholar 

  • Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of γ- hexachlorocyclohexane (Lindane) by a non-white rot fungus Conidiobolus 03-1-56 isolated from litter. Indian J Microbiol 48:134–141

    Article  CAS  Google Scholar 

  • Ohisa N, Yamaguchi M, Kurihara N (1980) Lindane degradation by cell-free extracts of Clostridium rectum. Arch Microbiol 125:221–225

    Article  PubMed  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  PubMed  CAS  Google Scholar 

  • Qiu LM, Zhang JY, Luo YM (2005) Residues of HCH and DDT in agricultural soils of North of Zhejiang and its risk evaluation. J Agro Environ Sci 24(6):1161–1165, in Chinese

    CAS  Google Scholar 

  • Quintero JC, Moreira MT, Feijoo G, Lema JM (2005) Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere 61:528–536

    Article  PubMed  CAS  Google Scholar 

  • Simon D, Helliwell S (1998) Extraction and quantification of chlorophyll a from freshwater green algae. Water Res 32:2220–2223

    Article  CAS  Google Scholar 

  • Singh A, Lal R (2009) Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  PubMed  CAS  Google Scholar 

  • Suresh BG, Hans RK, Singh J, Viswanathan PN, Joshi PC (2001) Effect of lindane on the growth and metabolic activities of cyanobacteria. Ecotoxicol Environ Saf 48:219–221

    Article  Google Scholar 

  • Tiedje JM, Quensen III JF, Chee-Sanford J, Schimel JP, Boyd SA (1992) Microbial reductive dechlorination of PCBs. Session 15. In: Pacific Basin Conference on Hazardous Waste, 1992. Proceedings, Bangkok, Thailand. East-West Center. Honolulu, Hawaii

  • Yao FX, Yu GF, Bian YR, Yang XL, Wang F, Jiang X (2007) Bioavailability to grains of rice of aged and fresh DDD and DDE in soils. Chemosphere 68:78–84

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Luo YM, Teng Y, Zhao QG, Wang HF (2006) DDT residues in the typical soil types of Pearl River Delta region and its potential risk. Soils 38:547–551 (in Chinese)

    CAS  Google Scholar 

  • Zhang H, Yang C, Zhao Q, Qiao C (2009) Development of an autofluorescent organophosphates-degrading Stenotrophomonas sp. with dehalogenase activity for the biodegradation of hexachlorocyclohexane (HCH). Bioresour Technol 100:3199–3204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No: 20707019), the National Natural Science Foundation of China (No: 21077030) and the Program for Excellent Young Teachers in Hangzhou Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Hu, C., Jia, X. et al. Characteristics of γ-hexachlorocyclohexane biodegradation by a nitrogen-fixing cyanobacterium, Anabaena azotica . J Appl Phycol 24, 221–225 (2012). https://doi.org/10.1007/s10811-011-9670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9670-7

Keywords

Navigation