Skip to main content

Advertisement

Log in

Cytotoxic and non-cytotoxic exometabolites of the cyanobacterium Nostoc insulare

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The isolation, identification and quantification of exometabolites from culture media of the cyanobacterium Nostoc insulare are described. Besides the known exometabolite 4,4′-dihydroxybiphenyl (I), two more compounds, the β-carboline 9H-pyrido(3,4-b)indole (norharmane, II) and N,N′-(4,5-dimethyl-1,2-phenylene)bis-acetamide (III), were discovered. Concentrations of all three compounds in media and biomass of five 250 L cultures of N. insulare were determined. Culture medium values for I ranged between 200 and 1,250 μg L−1 (1.1–6.7 μmol L−1), for III between 115 and 390 μg L−1 (0.5–1.8 μmol L−1), whereas concentrations of II were conspicuously lower (2–16 μg L−1 or 0.014–0.094 μmol L−1). Amounts of III per volume of culture medium were about tenfold higher than in the biomass contained in an equal culture volume. This difference is an indication for an active excretion of III. Amounts of I and II in biomass and media were of no significant difference. In the neutral red uptake assay, I and II were found to be toxic against eukaryotic cells as follows: I was of considerable cytotoxicity in concentrations from 1,000 to 10 mg L−1 and of lower cytotoxicity (causing a 27 % decrease of cell viability) in a concentration of 1,000 μg L−1, whereas II was merely of considerable cytotoxicity in concentrations from 1,000 to 100 mg L−1. Because of the cytotoxicity of I and because of the many known pharmacological effects of II there is a possibility that a certain amount of risk to humans and livestock comes from cultures or even from biomass- free culture media of N. insulare. The natural function of the examined exometabolites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becher PG, Beuchat J, Gademann K, Jüttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68:1793–1795

    Article  PubMed  CAS  Google Scholar 

  • Blom JF, Brütsch T, Barbaras D, Bethuel Y, Locher HH, Hubschwerlen C et al (2006) Potent algicides based on the cyanobacterial alkaloid nostocarboline. Org Lett 8:737–740

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A, Dello Sbarba P, Paccagnini A, Donnini S, Filippi S, Moroni F (2000) Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-gamma-activated macrophages. J Leukoc Biol 68:260–266

    PubMed  CAS  Google Scholar 

  • Connop BP, Kalisch BE, Boegman RJ, Jhamandas K, Beninger RJ (1995) Enhancement of 7-nitro indazole-induced inhibition of brain nitric oxide synthase by norharmane. Neurosci Lett 190:69–72

    Article  PubMed  CAS  Google Scholar 

  • Cooper EJ, Hudson AL, Parker CA, Morgan NG (2003) Effects of beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur J Pharmacol 482:189–196

    Article  PubMed  CAS  Google Scholar 

  • Falch BS, König GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM et al (1995) Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Med 61:321–328

    Article  PubMed  CAS  Google Scholar 

  • Flores E, Wolk CP (1986) Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch Microbiol 145:215–219

    Article  PubMed  CAS  Google Scholar 

  • Gromov BV, Vepritskiy AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium). J Appl Phycol 3:55–59

    Article  CAS  Google Scholar 

  • Jaki B, Heilmann J, Sticher O (2000a) New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). J Nat Prod 63:1283–1285

    Article  CAS  Google Scholar 

  • Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O (2000b) Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63:339–343

    Article  CAS  Google Scholar 

  • Jaki B, Orjala J, Sticher O (1999) A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc comune. J Nat Prod 62:502–503

    Article  PubMed  CAS  Google Scholar 

  • Jaki B, Zerbe O, Heilmann J, Sticher O (2001) Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195). J Nat Prod 63:154–158

    Article  Google Scholar 

  • Jüttner F, Todorova AK, Walch N, von Philipsborn W (2001) Nostocyclamide M: a cyanobacterial cyclic peptide with allelopathic activity from Nostoc sp. 31. Phytochem 57:613–619

    Article  Google Scholar 

  • Larsen LK, Moore RE, Patterson GML (1994) β-Carbolines from the blue-green alga Dichothrix baueriana. J Nat Prod 57 (3):419–421

    Article  PubMed  CAS  Google Scholar 

  • Lindl T, Bauer J (1994) Zell-und Gewebekultur-Einführung in die Grundlagen sowie ausgewählte Methoden und Anwendungen. Gustav-Fischer, Stuttgart, p 201

    Google Scholar 

  • Ördog V, Stirk WA, Lenobel R, Bancířová M, Strnad M, van Staden J et al (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314

    Article  Google Scholar 

  • Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J Appl Phycol 12:543–547

    Article  Google Scholar 

  • Pohl P, Kohlhase M, Krautwurst S, Baasch KH (1987) An inexpensive inorganic culture medium for the mass cultivation of freshwater microalgae. Phytochem 26:1657–1659

    Article  Google Scholar 

  • Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In: Stadler T, Mollion J, Verdus M-C, Karamanos Y, Morvan H, Christiaen D (eds) Algal Biotechnology, Elsevier, London, pp 209–217

    Google Scholar 

  • Robinson ESJ, Anderson NJ, Crosby J, Nutt DJ, Hudson AL (2003) Endogenous β-carbolines as clonidine-displacing substances. Ann NY Acad Sci 1009:157–166

    Article  PubMed  CAS  Google Scholar 

  • Schlegel I, Doan NT, de Chazal N, Smith GD (1998) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479

    Article  Google Scholar 

  • Schlösser UG (1994) SAG-Sammlung von Algenkulturen at the University of Göttingen. Bot Acta 107:113–186

    Google Scholar 

  • Skup M, Oderfeld-Nowak B, Rommelspacher H (1983) In vitro studies on the effect of beta-carbolines on the activities of acetylcholinesterase and choline acetyltransferase and on the muscarinic receptor binding of the rat brain. J Neurochem 41:62–68

    Article  PubMed  CAS  Google Scholar 

  • Todorova AK, Jüttner F, Linden A, Plüss T, von Philipsborn W (1995) Nostocyclamide: a new macroscyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria). J Org Chem 60:7891–7895

    Article  CAS  Google Scholar 

  • Totsuka Y, Hada N, Matsumoto K, Kawahara N, Murakami Y, Yokoyama Y et al (1998) Structural determination of a mutagenic aminophenylnorharman produced by the co-mutagen norharman with aniline. Carcinogenesis 19:1995–2000

    Article  PubMed  CAS  Google Scholar 

  • Totsuka Y, Kataoka H, Takamura-Enya T, Sugimura T, Wakabayashi K (2002) In vitro and in vivo formation of aminophenylnorharman from norharman and aniline. Mutat Res 506:49–54

    PubMed  Google Scholar 

  • Totsuka Y, Takamura-Enya T, Nishigaki R, Sugimura T, Wakabayashi K (2004) Mutagens formed from beta-carbolines with aromatic amines. J Chromatogr B 802:135–141

    Article  CAS  Google Scholar 

  • Uezono T, Maruyama W, Matsubara K, Naoi M, Shimizu K, Saito O et al (1991) Norharman, an indoleamine-derived β-carboline, but not Trp-P-2, a γ-carboline, induces apoptotic cell death in human neuroblastoma SH-SY5Y cells. J Neural Transm 108:943–953

    Article  Google Scholar 

  • Vepritskiy AA, Gromov BV, Titova NN, Mamkayeva KA (1991) Production of the antibiotic-algicide cyanobacterin LU-2 by the filamentous cyanobacterium Nostoc sp. Mikrobiologiya Transl 60:21–25

    Google Scholar 

  • Volk R-B (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana, respectively. J Appl Phycol 17:339–347

    Article  CAS  Google Scholar 

  • Volk R-B, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer-B. Volk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volk, RB., Mundt, S. Cytotoxic and non-cytotoxic exometabolites of the cyanobacterium Nostoc insulare . J Appl Phycol 19, 55–62 (2007). https://doi.org/10.1007/s10811-006-9110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-006-9110-2

Key words

Navigation