Skip to main content
Log in

Aquacultural characteristics of Rhizoclonium riparium and an evaluation of its biomass growth potential

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A study was made of environmental factors affecting the growth of Rhizoclonium riparium in order to evaluate its suitability for large-scale culturing. The results indicate that under the natural conditions prevailing at Taishi, Taiwan, this species can grow year-round, with a monthly biomass production (oven-dried) of 945–1540 kg ha−1 pond surface (assuming a pond depth of 1 m). The specific growth rate ranged from –2.1 to 10.4% per day. Salinity and temperature, both influenced the rate significantly, with optimal values at 20% and 25 °C, respectively. Short (2-mm) lengths of filaments had a higher specific growth rate than longer (20 mm) filaments. Under rotational culturing conditions, the specific growth rate was reduced when flow was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biggs BJF, Goring DG, Nikora VI (1998) Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J. Phycol. 34: 598–607.

    Article  Google Scholar 

  • Bischoff B, Wiencke C (1993) Temperature requirements for growth and survival of macroalgae from Disko Island (Greenland). Helgoländer Meeresunters Res. 47: 167–191.

    Google Scholar 

  • Caffrey JM (1992) Management of aquatic and invasive riparian vegetation in Irish amenity watercourses. In Mollan C (ed), Water of Life. Royal Dublin Society, Dublin, pp. 130–141.

    Google Scholar 

  • Caffrey JM, Monahan C (1999) Filamentous algal control using barley straw. Hydrobiologia 415: 315–318.

    Article  Google Scholar 

  • Chao KP, Su YC, Chen CS (1999) Chemical composition and potential for utilization of the alga Rhizoclonium sp. J. Appl. Phycol. 11: 525–533.

    Article  CAS  Google Scholar 

  • Chao KP, Su YC, Chen CS (2000) Feasibility of utilizing Rhizoclonium in pulping and papermaking. J. appl. Phycol. 12: 53–62.

    Article  CAS  Google Scholar 

  • den Hartog C, Polderman, PJG (1975). Changes in seagrass populations of the Dutch Waddenzee. Aquat. Bot. 1: 141–147.

    Article  Google Scholar 

  • Eiseltova M, Pokorny J (1994) Filamentous algae in fish ponds of the Trebon Biosphere Reserve – Ecophysiological study. Vegetatio 113: 155–170.

    Google Scholar 

  • Erler D, Pollard P, Duncan P, Knibb W (2004) Treatment of shrimp farm effluent with omnivorous finfish and artificial substrates. Aquaculture Res. 35: 1–12.

    Article  Google Scholar 

  • Finlay JC, Power ME, Cabana G (1999) Effects of water velocity on algal carbon isotope ratios: Implications for river food web studies. Limnol. Oceanogr. 44: 1198–1203.

    Google Scholar 

  • Ghosh M, Gaur JP (1994) Algal periphyton of an unshaded stream in relation to in situ nutrient enrichment and current velocity. Aquat. Bot. 47: 185–189.

    Article  Google Scholar 

  • Hall DJ, Walmsley RD (1991) Effect of temperature on germination of Rhizocloniun riparium (Siphonocladales, Chlorophyta) akinetes and zoospores. J. Phycol. 27: 537–539.

    Article  Google Scholar 

  • Hein M, Pedersen MF, Sand-Jensen K (1995) Size-dependent nitrogen uptake in micro- and macroalgae. mar. Ecol. progr. Ser. 118: 247–253.

    Google Scholar 

  • Imai M, Katayama N, Yamaguchi Y (1997) Effects of salinity on growth, photosynthesis and respiration in a freshwater alga Rhizoclonium riparium (Chlorophyceae, Cladophorales) Phycol. Res. 45: 233–237.

    Google Scholar 

  • Jones JI, Eation JW, Hardwick K (2000) The effect of changing environmental variables in the surrounding water on the physiology of Elodea nuttallii. Aquat. Bot. 66: 115–129.

    Article  Google Scholar 

  • Lin MN, Lin KY (1981) The toxicity of radapon (sodium dichlorpionate) and cupric sulfate to Gracilaria, Chaetomorpha and some fishes. China Fish Mon. 343: 3–9.

    Google Scholar 

  • Mealta EJ, Verschuure JM, Nienhuis PH (2002) Regulation of spatial and seasonal variation of macroalgal biomass in a brackish, eutrophic lake. Helgoländer Meeresunters Res. 56: 211– 220.

    Google Scholar 

  • McIntire CD, Phinney HK, Larson GL, Buktenica M (1994) Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon. Northwest Sci. 68: 11–21.

    Google Scholar 

  • Mulbry WW, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J. appl. Phycol. 13: 301–306.

    Article  Google Scholar 

  • Parchevskii VP, Rabinovich MA (1992) Growth rate and harvest of the green alga Enteromorpha intestinalis on artificial substrates in a waste water area. J. mar. Biol. Ass., UK. 17: 30–36.

    Google Scholar 

  • Peterson CG, Stevenson RJ (1990) Post-spate development of epilithic algal communities in different current environments. Can. J. Bot. 68: 2092–2102.

    Google Scholar 

  • Phillips A, Lambert G, Granger JE, Steinke TD (1994) Horizontal zonation of epiphytic algae associated with Avicennia marina (Forssk.) Vierh. pneumatophores at Beachwood Mangroves Nature Reserve, Durban, South Africa. Bot. mar. 37: 567–576.

    Google Scholar 

  • Phillips A, Lambert G, Granger JE, Steinke TD (1996) Vertical zonation of epiphytic algae associated with Avicennia marina (Forssk.) Vierh. pneumatophores at Beachwood Mangroves Nature Reserve, Durban, South Africa. Bot. mar. 39: 167– 175.

    Google Scholar 

  • Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45: 167–221.

    CAS  Google Scholar 

  • Ridge I, Walters J, Street M (1999) Algal growth control by terrestrial leaf litter: A realistic tool? Hydrobiologia 395/396: 173–180.

    Article  CAS  Google Scholar 

  • Saravia LA, Momo F, Lissin LDB (1998) Modelling periphyton dynamics in running water. Ecol. Model. 114: 35–47.

    Article  Google Scholar 

  • Schultz MP (2000) Turbulent boundary layers on surfaces covered with filamentous algae. J. Fluids Eng. 122: 357–363.

    Article  Google Scholar 

  • Su YC, Wang CH (1998) Current status and reduction strategies for carbon dioxide emission of Taiwan’s pulp and paper industry. Taiwan Tappy J. 1: 8–18.

    Google Scholar 

  • von Wachenfeldt T (1981) Growth rate of some Baltic macroalgae. Limnologica 15: 311–317.

    Google Scholar 

  • Wheeler WN (1980) Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. mar. Biol. 56: 103–110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chang Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, KP., Chen, CS., Wang, E.IC. et al. Aquacultural characteristics of Rhizoclonium riparium and an evaluation of its biomass growth potential. J Appl Phycol 17, 67–73 (2005). https://doi.org/10.1007/s10811-005-5554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-005-5554-z

Keywords

Navigation