Skip to main content
Log in

Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The uptake of inorganic carbon into the thallus of Macrocystis pyrifera (L.) C. Ag. requires first that the inorganic carbon pass through the water medium to the plant surface. This transfer of inorganic carbon to the thallus must take place through a boundary layer. Experiments in water tunnels indicate that the boundary layer adjacent to the M. pyrifera blade may be turbulent in water speeds as low as 1 cm sec-1. Photosynthetic output of the blade can be increased by a factor of 300% by increasing water speeds over the blade surface from 0 to 4 cm sec-1. This is consistent with a decrease in the thickness of the boundary layer. Above 4 cm sec-1, the assimilation of carbon was limiting. The assimilation of carbon is generally known to follow Michaelis-Menten-like kinetics. Combining the two uptake steps into an overall model of carbon uptake agrees well with photosynthetic data obtained from M. pyrifera under varying conditions of water speed and bicarbonate concentrations in the laboratory. The ecological and morphological consequences of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ambühl, H.: Die Bedeutung der Strömung als ökologischer Faktor. Schweiz. Z. Hydrol. 21, 133–264 (1959)

    Google Scholar 

  • Bray, R. N.: Daily foraging migrations of the blacksmith, Chromus punctipinnis, Ph.D. thesis, University of California, Santa Barbara 1978

    Google Scholar 

  • Charters, A. C.: Transition between laminar and turbulent flow by transverse contamination. Tech. Notes natn. advis. Comm. Aeronaut., Wash. 891, (1940)

  • Connell, J. H., B. J. Mechalas and J. A. Mihursky (Eds): Analysis of the physical/chemical environment near San Onofre Nuclear Generating Station in September, October, 1976. Docums mar. Rev. Comm., mar. Sci. Inst., Univ. Calif., S Barbara 2 (77-06 3), 4-2, 4–99 (1977)

    Google Scholar 

  • Conover, J. T.: The importance of natural diffusion gradients and transport of substances related to benthic marine plant metabolism. Botanica mar. 11, 1–9 (1968)

    Google Scholar 

  • D'Elia, C. F. and J. A. DeBoer: Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J. Phycol. 14, 266–272 (1978)

    Google Scholar 

  • Dromgoole, F. I.: The effects of oxygen on dark respiration and apparent photosynthesis of marine macroalgae. Aquat. Bot. 4, 281–297 (1978)

    Article  Google Scholar 

  • Emerson, R. and L. Green: Manometric measurement of photosynthesis in the marine alga Gigartina. J. gen. Physiol. 17, 817–842 (1934)

    Article  Google Scholar 

  • Eppley, R. W., J. N. Rogers and J. J. McCarthy: Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14, 912–920 (1969)

    Google Scholar 

  • Falco, J. W., P. C. Kerr, M. B. Barron and D. L. Brockway: The effect of mass transport on biostimulation of algal growth. Ecol. Modelling 1, 117–131 (1975)

    Article  Google Scholar 

  • Fletcher, J. S.: Visualization of flows around swimming fish using the hydrogen bubble and shadowgraph methods, 79 pp. M.S. thesis, University of California, Santa Barbara 1974

    Google Scholar 

  • Gavis, J.: Munk and Riley revisited: nutrient diffusion transport and rates of phytoplankton growth. J. mar. Res. 34, 161–179 (1976)

    Google Scholar 

  • Jackson, G. A.: Nutrients and productivity of the giant kelp, Macrocystis pyrifera, in the near shore, 134 pp. PhD thesis, California Institute of Technology, Pasedena 1976

    Google Scholar 

  • Lehman, J. T.: Enhanced transport of inorganic carbon into algal cells and its implications for the biological fixation of carbon. J. Phycol. 14, 33–42 (1978)

    PubMed  Google Scholar 

  • Lommen, P. W., C. R. Schwintzer, C. S. Yocum and D. M. Gates: A model describing photosynthesis in terms of gas diffusion and enzyme kinetics. Planta 98, 195–220 (1971)

    Google Scholar 

  • Levich, V. G.: Physiochemical hydrodynamics, 700 pp. Englewood Cliffs: Prentice-Hall 1962

    Google Scholar 

  • Leyton, L.: Fluid behaviour in biological systems, 234 pp. Oxford: Clarendon Press 1975

    Google Scholar 

  • McFarland, W. N. and J. Prescott: Standing crop, chlorophyll content, and in situ metabolism of a giant kelp community in Southern California. Contr. mar. Sci. Univ. Tex. 6, 109–132 (1959)

    Google Scholar 

  • Munk, W. H. and G. A. Riley: Absorption of nutrients by aquatic plants. J. mar. Res. 11, 215–240 (1952)

    Google Scholar 

  • Nobel, P. S.: Biophysical plant physiology, 488 pp. San Francisco: W. H. Freeman 1974

    Google Scholar 

  • Pace, D. R.: Polymorphism in Macrocystis integrifolia Bory in relation to water motion, Part I. 75 pp. M.S. thesis, University of British Columbia, Vancouver 1972

    Google Scholar 

  • Pasciak, W. J. and J. Gavis: Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19, 881–888 (1974)

    Google Scholar 

  • Raven, J. A.: Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45, 167–221 (1970)

    Google Scholar 

  • Schlichting, J.: Boundary layer theory, 648 pp. New York: McGraw-Hill 1968

    Google Scholar 

  • Schumacher, G. J. and L. A. Whitford: Respiration and 32P uptake in various species of freshwater algae as affected by current. J. Phycol. 1, 78–80 (1965)

    Google Scholar 

  • Schwenke, H.: Water movement: plants. In: Marine ecology, Vol I. Environmental factors, Pt 2 pp 1091–1121. Ed. by O. Kinne. New York: Wiley-Interscience 1971

    Google Scholar 

  • Skottsberg, C.: Zur Kenntnis der Subantarktischen und Antarktischen Meeresalgen. Phaeophyceen. Wiss. Ergebn. schwed. Südpolarexped. 4, 1–172 (1907)

    Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis, rev. ed. Bull. Fish. Res. Bd Can. 167, 1–310 (1972)

    Google Scholar 

  • Sverdrup, H. V., M. W. Johnson and R. H. Fleming: The oceans, 1087 pp. Englewood Cliffs: Prentice-Hall 1942

    Google Scholar 

  • Thornley, J. H. M.: Mathematical models in plant physiology, 318 pp. New York: Academic Press 1976

    Google Scholar 

  • Tseng, C. K. and B. M. Sweeney: Physiological studies of Gelidium cartilagineum. I. Photosynthesis with special reference to the carbon dioxide factor. Am. J. Bot. 33, 706–715 (1946)

    Google Scholar 

  • Westlake, D. F.: Some effects of low-velocity currents on the metabolism of aquatic macrophytes. J. exp. Bot. 18, 187–205 (1967)

    Google Scholar 

  • Wheeler, W. N.: Laboratory and field studies of photosynthesis in the marine crop plant Macrocystis. Proc. int. Seaweed Symp. 8, (in press). (1980a)

  • Wheeler, W. N.: Pigment content and photosynthetic rate of the fronds of Macrocystis pyrifera. Mar. Biol. 56, 97–101 (1980b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, W.N. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera . Mar. Biol. 56, 103–110 (1980). https://doi.org/10.1007/BF00397128

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397128

Keywords

Navigation