Skip to main content
Log in

Anisotropy of elastic properties of materials

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Papers dealing with the generalized Hooke’s law for linearly elastic anisotropic media are reviewed. The papers considered are based on Kelvin’s approach disclosing the structure of the generalized Hooke’s law, which is determined by six eigenmoduli of elasticity and six orthogonal eigenstates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Novozhilov, Theory of Elasticity, Pergamon Press (1961).

  2. V. Novacki, Theory of Elasticity [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  3. A. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1944).

    MATH  Google Scholar 

  4. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leyden (1975).

    MATH  Google Scholar 

  5. Yu. N. Rabotnov, Mechanics of a Deformable Solid [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  6. P. Bechterew, “Analytical study of the generalized Hooke’s law,” in: Communication on Research Activities in the Republic [in Russian], Issue 12, Nauch.-Khim. Izd., Leningrad (1924), pp. 20–23.

    Google Scholar 

  7. P. Bechterew, “Analytical study of the generalized Hooke’s law,” in: Communication on Research Activities in the Republic, Issue 17, Nauch.-Khim. Izd., Leningrad (1925), pp. 5–9.

    Google Scholar 

  8. P. Bechterew, “Analytical study of the generalized Hooke’s law. Application of the doctrine on the potential energy and the beginning of the minimum work,” in: Zh. Russ. Fiz.-Khim. Obshch. Leningrad. Univ., Fizika, 57,Issues 3/4, 359–392 (1925).

    Google Scholar 

  9. P. Bechterew, Analytical Study of the Generalized Hooke’s Law. Application of the Doctrine on the Potential Energy and the Beginning of the Minimum Work [in Russian], Part 1, Izd. Avt., Leningrad (1925).

    Google Scholar 

  10. P. Bechterew, Analytical Study of the Generalized Hooke’s Law, [in Russian], Part 2, Izd. Avt., Leningrad (1925).

    Google Scholar 

  11. P. Bechterew, “Analytische Untersuchung des verallgemeinerten Hookeschen Gesetzes. Anwendung der Methode der Koordinatentransformation,” Z. Kristallogr., 62, Nos. 3/4, 223–254 (1925).

    Google Scholar 

  12. P. Bechterew, “Analytical study of the generalized Hooke’s law. Application of the method of coordinate transformation,” Zh. Russ. Fiz.-Khim. Obshch. Leningrad. Univ., Fizika, 58,Issue 3, 415–446 (1926).

    Google Scholar 

  13. P. Bechterew, “Analytische Untersuchung des verallgemeinerten Hookeschen Gesetzes. Anwendung der Lehre von der potentiellen Energie und dem Prinzip der minimalen Arbeit,” Z. Kristallogr., 64, Nos. 5/6, 373–399 (1926).

    Google Scholar 

  14. P. Bechterew, “On systematization of elasticity constants of anisotropic substances,” Zh. Russ. Fiz.-Khim. Obshch. Leningrad. Univ., Fizika. 60,Issue 4, 351–353 (1928).

    Google Scholar 

  15. P. Bechterew, “Zur Systematik der Elastizitatsconstanten anisotroper Stoffe,” Z. Kristallogr., 71, No. 3, 274–276 (1929).

    Google Scholar 

  16. P. Bechterew, “Constitutive coefficients of elasticity and strain of crystals, as applied to isotropy,” Zh. Éksp. Teor. Fiz., 4,Issue 9, 954–981 (1934).

    Google Scholar 

  17. V. V. Novozhilov and K. F. Chernykh, “On elastic constants of the linear elasticity theory,” in: Advanced Problems of Mechanics and Aviation [in Russian], Mashinostroenie, Moscow (1982), pp. 215–221.

    Google Scholar 

  18. K. F. Chernykh, “Symmetric functions of symmetric tensors in the anisotropic theory of elasticity,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 5–14 (1970).

  19. L. I. Sedov, Mechanics of Continuous Media [in Russian], Vol. 1, Nauka, Moscow (1973).

    Google Scholar 

  20. K. F. Chernykh, “Anisotropy of material (linear theory),” in: Mechanics of Deformable Solids and Structures [in Russian], Izd. Akad. Nauk Arm. SSR, Erevan (1985), pp. 410–419.

    Google Scholar 

  21. K. F. Chernykh, Nonlinear Theory of Elasticity in Machine-Building Calculations [in Russian], Mashinostroenie, Leningrad (1986).

    Google Scholar 

  22. K. F. Chernykh, Introduction into Anisotropic Elasticity [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  23. N. I. Ostrosablin, “On the matrix of coefficients in equations of the linear theory of elasticity,” Dokl. Akad. Nauk SSSR, 321, No. 1, 63–65 (1991).

    MathSciNet  Google Scholar 

  24. N. I. Ostrosablin, “Equations of the linear theory of elasticity,” J. Appl. Mech. Tech. Phys., 33, No. 3, 438–446 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  25. F. I. Fedorov, Theory of Elastic Waves in Crystals [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  26. S. P. Timoshenko, History of Sciences of Material Resistance with Brief Information from the History of the Elasticity Theory and the Theory of Structures [in Russian], Gostekhteoretizdat, Moscow (1957).

    Google Scholar 

  27. I. Todhunter and K. Pearson, A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, Vol. 1: Galilei to Saint-Venant 1639–1850, Dover, New York (1960).

    Google Scholar 

  28. I. Todhunter and K. Pearson, A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, Vol. 2: Saint-Venant to Lord Kelvin. Part 1, Dover, New York (1960).

    Google Scholar 

  29. I. Todhunter and K. Pearson, A history of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, Vol. 2: Saint-Venant to Lord Kelvin. Part 2, Dover, New York (1960).

    Google Scholar 

  30. C. R. Trusdell, Essay on the History of Mechanics, Springer-Verlag, New York (1968).

    Google Scholar 

  31. C. R. Trusdell, “Stages of the evolution of the notion of stress,” in: Problems of Mechanics of Continuous Media (collected scientific papers) [Russian translation], Izd. Akad. Nauk SSSR, Moscow (1961), pp. 439–447.

    Google Scholar 

  32. G. P. Cherepanov, “Equal-strength tower,” Vestn. Samarsk. Gos. Univ., Estestvennonauch. Ser., No. 5, 42–51 (2005).

  33. M. Born and Kun Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford (1954).

    MATH  Google Scholar 

  34. J. Rychlewski, “On Hooke’s law,” Prikl. Mat. Mekh., 48,Issue 3, 420–435 (1984).

    MathSciNet  Google Scholar 

  35. N. I. Ostrosablin, “On the structure of the elasticity moduli tensor. Elastic eigenstates,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 66, Inst. of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1984), pp. 113–125.

    Google Scholar 

  36. W. Thomson (Lord Kelvin), “On six principal strains of an elastic solid,” Philos. Trans. Roy. Soc. London, 166, 495–498 (1856).

    Google Scholar 

  37. L. M. Minkevich, “Presentation of elasticity and compliance tensors via eigentensors,” in: Issues of Dynamics of Mechanical Systems of Vibration-Shock Effect, Novosib. Eletrotech. Inst., Novosibirsk (1973), pp. 107–110.

    Google Scholar 

  38. L. M. Minkevich, “Presentation of elasticity and compliance tensors via eigentensors,” in: Proc. 3rd Conf., Tomsk Inst. Math. Mech., Issue 2, Izd. Tomsk. Univ., Tomsk (1973), pp. 115–116.

    Google Scholar 

  39. L. M. Minkevich, Mechanics of a Continuous (Anisotropic) Medium [in Russian], Part 2, Novosibirsk Electrotechnical Inst., Novosibirsk (1973).

    Google Scholar 

  40. J. Rychlewski, “Mathematical structure of elastic solids,” Preprint No. 217, Inst. for Problems in Mechanics, Acad. of Sci. of the USSR, Moscow (1983).

    Google Scholar 

  41. A. I. Chanyshev, “Plasticity of anisotropic media,” J. Appl. Mech. Tech. Phys., 25, No. 2, 311–313 (1984).

    Article  ADS  Google Scholar 

  42. A. I. Chanyshev, “Solution of limit load problems for a rigid-plastic anisotropic body,” J. Appl. Mech. Tech. Phys., 25, No. 5, 806–809 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. F. Revuzhenko, A. I. Chanyshev, and E. I. Shemaykin, “Mathematical models of elastoplastic solids,” in: Advanced Problems of Computational Mathematics and Mathematical Modeling [in Russian], Nauka, Novosibirsk (1985), pp. 108–119.

    Google Scholar 

  44. N. I. Ostrosablin, “On classification of anisotropic materials,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 71, Inst. of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1985), pp. 82–96.

    Google Scholar 

  45. N. I. Ostrosablin, “Elasticity eigenmoduli and eigenstates for materials with crystallographic symmetry,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 75, Inst. of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1986), pp. 113–125.

    Google Scholar 

  46. N. I. Ostrosablin, “On the structure of the elastic tensor and the classification of anisotropic materials,” J. Appl. Mech. Tech. Phys., 27, No. 4, 600–607 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  47. M. M. Mehrabadi and S. C. Cowin, “Eigentensors of linear anisotropic elastic materials,” Quart. J. Mech. Appl. Math., 43, No. 1, 15–41 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  48. P. S. Theocaris, “The compliance fourth-rank tensor for the transtropic material and its spectral decomposition,” in: Proc. Nat. Acad. Sci. Athens., 64, No. 1, pp. 80–100 (1989).

    Google Scholar 

  49. P. S. Theocaris and T. P. Philippidis, “Elastic eigenstates of a medium with transverse isotropy,” Arch. Mech. Stos., 41, No. 5, 717–724 (1989).

    MATH  MathSciNet  Google Scholar 

  50. P. S. Theocaris and T. P. Philippidis, “Variational bounds on the eigenangle ω of transversely isotropic materials,” Acta Mech., 85, Nos. 1/2, 13–26 (1990).

    Article  Google Scholar 

  51. P. S. Theocaris and T. P. Philippidis, “Spectral decomposition of compliance and stiffness fourth-rank tensors suitable for orthotropic materials,” Z. Angew. Math. Mech., 71, No. 3. 161–171 (1991).

    MATH  MathSciNet  Google Scholar 

  52. S. Sutcliffe, “Spectral decomposition of the elasticity tensor,” Trans. ASME, J. Appl. Mech., 59, No. 4, 762–773 (1992).

    MATH  ADS  MathSciNet  Google Scholar 

  53. W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig-Berlin (1910).

    Google Scholar 

  54. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystallophysics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  55. N. I. Ostrosablin, “On the closest boundaries of elasticity constants and bringing the specific strain energy to the canonical form,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 90–94 (1989).

  56. N. I. Ostrosablin, “The most restrictive bounds on change in the applied elastic constants for anisotropic materials,” J. Appl. Mech. Tech. Phys., 33, No. 1, 95–100 (1992).

    Article  ADS  Google Scholar 

  57. Ya. I. Sekerzh-Zen’kovich, “On calculating the stability of a plywood sheet as an anisotropic plate,” Tr. TsAGI, Issue 76, 3–26 (1931).

  58. N. G. Chentsov, “Studying plywood as an orthotropic plate,” Tekh. Zamet. TsAGI, No. 91, 1–27 (1936).

  59. A. L. Rabinovich, “On elastic constants and strength of anisotropic materials,” Tr. TsAGI, No. 582 (1946).

  60. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Solid [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  61. E. K. Ashkenazi and É. V. Ganov, Anisotropy of Structural Materials [in Russian], Mashinostroenie, Leningrad (1980).

    Google Scholar 

  62. N. I. Ostrosablin, “On invariants of the fourth-rank tensor of elasticity moduli,” Sib. Zh. Indust. Mat., 1, No. 1, 155–163 (1998).

    MATH  MathSciNet  Google Scholar 

  63. A. Rathkjen, “Symmetry relations for anisotropic materials,” Colloq. Int. CNRS, No. 295, 47–63 (1982).

  64. L. B. Ilcewicz, M. N. L. Narasimhan, and J. B. Wilson, “Micro and macro material symmetries in generalized continua,” Int. J. Eng. Sci., 24, No. 1, 97–109 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  65. M. S. Dresselhaus and G. Dresselhaus, “Note on sufficient symmetry conditions for isotropy of the elastic moduli tensor,” J. Matter. Res., 6, No. 5, 1114–1118 (1991).

    Article  ADS  Google Scholar 

  66. S. C. Cowin and M. M. Mehrabadi, “The mirror symmetries of anisotropic elasticity,” in: Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, Proc. of the IUTAM-ISIMM Symp. (Nottingham, August 30 to September 3, 1994), Kluwer Acad. Publ., Dordrecht (1995), pp. 31–36.

    Google Scholar 

  67. S. C. Cowin and M. M. Mehrabadi, “Anisotropic symmetries of linear elasticity,” Appl. Mech. Rev., 48, No. 5, 247–285 (1995).

    Google Scholar 

  68. T. C. T. Ting, “Generalized Cowin-Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight,” Int. J. Solids Struct., 40, No. 25, 7129–7142 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  69. S. C. Cowin and M. M. Mehrabadi, “On the identification of material symmetry for anisotropic elastic materials,” Quart. J. Mech. Appl. Math., 40, No. 4, 451–476 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  70. M. Hayes and A. N. Norris, “Static implications of the existence of a plane of symmetry in an anisotropic elastic solid,” Quart. J. Mech. Appl. Math., 45, No. 2, 141–147 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  71. S. Forte and M. Vianello, “Symmetry classes for elasticity,” J. Elast., 43, No. 2, 81–108 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  72. S. C. Cowin and G. J. Yang, “Material symmetry optimization by Kelvin modes,” J. Eng. Math., 37, Nos. 1–3, 27–43 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  73. S. C. Cowin and M. M. Mehrabadi, “On the structure of the linear anisotropic elastic symmetries,” J. Mech. Phys. Solids, 40, No. 7, 1459–1472 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. L. Bos, P. Gibson, M. Kotchetov, and M. Slawinski, “Classes of anisotropic media: a tutorial,” Studia Geophysica Geodaetica, 48, No. 1, 265–287 (2004).

    Article  ADS  Google Scholar 

  75. R. Baerheim, “Classification of symmetry by means of Maxwell multipoles,” Quart. J. Mech. Appl. Math., 51, No. 1, 73–103 (1998).

    Article  MathSciNet  Google Scholar 

  76. J. Rychlewski, “Symmetry of tensor functions and the spectral theorem,” Usp. Mekh. (Varshava), 11,Issue 3, 77–125 (1998).

    MathSciNet  Google Scholar 

  77. A. Bóna, I. Bucataru, and M. A. Slawinski, “Characterization of elasticity-tensor symmetries using SU(2),” J. Elast., 75, No. 3, 267–289 (2004).

    Article  MATH  Google Scholar 

  78. V. N. Madudin, O. S. Sadakov, and M. V. Apaichev, “Reasoning on symmetry in the formulation of the linear elasticity law,” Chelaybinsk Polytech. Inst., Chelyabinsk (1990). Deposited at VINITI 06.14.90, No. 3423-B90.

    Google Scholar 

  79. A. Bóna, I. Bucataru, and M. A. Slawinski, “Coordinate-free characterization of the symmetry classes of elasticity tensors,” J. Elast., 87, Nos. 2/3, 109–132 (2007).

    Article  MATH  Google Scholar 

  80. M. Basista, “Tensor functions representations as applied to deriving constitutive relations for skewed anisotropy,” Z. Angew. Math. Mech., 65, No. 3, 151–158 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  81. K. F. Chernykh, “On types of relations between symmetric tensors in mechanics of continuous media,” Inzh. Zh., Mekh. Tverd. Tela, No. 3, 42–51 (1967).

  82. V. V. Novozhilov, “On types of relations between stresses and strains in initially isotropic inelastic solids (geometric aspects),” Prikl. Mat. Mekh., 27,Issue 5, 734–812 (1963).

    MathSciNet  Google Scholar 

  83. B. D. Annin, “Lagrange-Silvester formula for a tensor function depending on two tensors,” Dokl. Akad. Nauk SSSR, 133, No. 4, 743–744 (1960).

    MathSciNet  Google Scholar 

  84. B. D. Annin, “Anisotropic tensor functions,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 11, Inst. of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1972), pp. 94–97.

    Google Scholar 

  85. D. V. Georgievskii, “Tensor-nonlinear effects in isothermal deformation of continuous media,” Usp. Mekh., 1, No. 2, 150–176 (2002).

    MathSciNet  Google Scholar 

  86. A. A. Il’yushin, “On the relation between stresses and low strains in mechanics of continuous media,” Prikl. Mat. Mekh., 18,Issue 6, 641–666 (1954).

    Google Scholar 

  87. N. I. Ostrosablin, “Functional relation between two symmetric second-rank tensors,” J. Appl. Mech. Tech. Phys., 48, No. 5, 734–736 (2007).

    Article  ADS  Google Scholar 

  88. L. M. Zubov and A. N. Rudev, “Decomposition of the deviator into pure shear elements,” Izv. Vyssh. Uchebn. Zaved. Sev.-Kavkaz. Regiona, Estestv. Nauki, Special Issue: Nonlinear Problems of Mechanics of Continuous Media, 79–85 (2000).

  89. L. M. Zubov and A. N. Rudev, “On the canonical presentation of the deviator of a symmetric tensor,” Dokl. Ross. Akad. Nauk, 385, No. 1, 44–47 (1998).

    MathSciNet  Google Scholar 

  90. A. N. Norris, “Pure shear axes and elastic strain energy,” Quart. J. Mech. Appl. Math., 59, No. 4, 551–561 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  91. B. M. Lempriere, “Poisson’s ratio in orthotropic materials,” AIAA J., 6, No. 11, 2226–2227 (1968).

    Article  ADS  Google Scholar 

  92. Ya. S. Sidorin, “Elastic and strength characteristics of glass-reinforced plastic under compression,” Mekh. Polimerov, No. 5, 866–869 (1970).

  93. I. I. Grakh and Ya. S. Sidorin, “On constraints on elastic coefficients of anisotropic solids,” Mekh. Polimer., No. 1, 84–88 (1974).

    Google Scholar 

  94. S. S. Abramchuk and V. P. Buldakov, “Admissible values of Poisson’s ratio of anisotropic materials,” Mekh. Kompozit. Mater., No. 2, 235–239 (1979).

    Google Scholar 

  95. É. I. Grigolyuk and E. Z. Korol’, “Some inequalities for Poisson’s ratios in linear thermoelasticity,” Dokl. Ross. Akad. Nauk, 346, No. 1, 43–45 (1996).

    MathSciNet  Google Scholar 

  96. K. S. Aleksandrov and T. V. Ryzhova, “Elastic properties of crystals. Review,” Kristallografiya, 6,Issue 2, 289–314 (1961).

    Google Scholar 

  97. H. B. Huntington, “The elastic constants of crystals,” Solid State Phys., 7, 213 (1958).

    Article  Google Scholar 

  98. H. B. Huntington, “The elastic constants of crystals,” Solid State Phys., 7, 213 (1958).

    Article  Google Scholar 

  99. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elasticity Moduli of Metals and Nonmetals: Handbook [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  100. B. P. Belikov, K. S. Alexandrov, and T. V. Ryzhova, Elastic Properties of Rock-Forming Minerals and Rocks [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  101. J. Chastenet de Géry, “Une représentation intrinsèque simple du tenseur d’énergie de déformation (cas anisotrope) par des opérateurs linéaires de l’espace à trois dimensions,” Comptes Rendus Acad. Sci., 248, No. 12, 1765–1768 (1959).

    MATH  Google Scholar 

  102. P. A. d’Auriac, “Étude du tenseur d’anisotropie, basée sur la représentation d’un tenseur symétrique dans un espace E 3 par un vecteur dans un espace E 6,” Comptes Rendus Acad. Sci., 272, No. 9, A612–A613 (1971).

    Google Scholar 

  103. L. A. Tolokonnikov and N. M. Matchenko, “On presentations of the limiting conditions for initially isotropic solids,” Probl. Prochn., No. 3, 54–56 (1974).

    Google Scholar 

  104. A. C. Pipkin, “Constraints in linearly elastic materials,” J. Elast., 6, No. 2, 179–193 (1976).

    MATH  MathSciNet  Google Scholar 

  105. K. S. Alexandrov, “Elastic properties of anisotropic media,” Author’s Abstract, Doct. Dissertation in Phys.-Math. Sci., Moscow (1967).

  106. K. A. Lur’e, “Some problems of optimal bending and tension of elastic plates,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 86–93 (1979).

  107. Chen Shaoting, “New concepts of elasticity theory and an application,” Acta Mech. Sinica, 16, No. 3, 259–274 (1984).

    Google Scholar 

  108. H. Z. Schreyer and Q. H. Zuo, “Anisotropic yield surfaces based on elastic projection operators,” Trans. ASME, J. Appl. Mech., 62, No. 3, 780–785 (1995).

    MATH  Google Scholar 

  109. P. F. Papkovich, Elasticity Theory, Oborongiz, Leningrad-Moscow (1939).

    Google Scholar 

  110. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press (1980).

  111. R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio = −1,” J. Elast., 15, No. 4, 427–431 (1985).

    Article  Google Scholar 

  112. K. Evans, “Tailoring the negative Poisson ratio,” Chem. Industry, London, No. 20, 654–657 (1990).

  113. R. C. Lakes, “Saint-Venant end effects for materials with negative Poisson’s ratios,” Trans. ASME, J. Appl. Mech., 59, No. 4, 744–746 (1992).

    ADS  Google Scholar 

  114. P. J. Neale, K. L. Alderson, A. P. Pickles, and K. E. Evans, “Negative Poisson’s ratio of microporous polyethylene in compression,” J. Mater. Sci. Lett., 12, No. 19, 1529–1532 (1993).

    Google Scholar 

  115. T. L. Warren, “Negative Poisson’s ratio in a transversely isotropic foam structure,” J. Appl. Phys., 67, No. 12, 7591–7594 (1990).

    Article  ADS  Google Scholar 

  116. N. Phan-Thien and B. L. Karihaloo, “Materials with negative Poisson’s ratio: a qualitative microstructural model,” Trans. ASME, J. Appl. Mech., 61, No. 4, 1001–1004 (1994).

    Google Scholar 

  117. S. P. Tokmakova, “Sections of crystals with negative Poisson’s ratios,” in: Acoustics of Heterogeneous Media: Annual Publ. of the Russian Acoustic Society [in Russian], Izd. Mosk. Fiz.-Tekh. Inst. Issue 2 (2001), pp. 127–137.

  118. V. E. Nazarov and A. M. Sutin, “Poisson’s ratio of crumbling media,” Akust. Zh., 41, No. 6, 932–934 (1995).

    Google Scholar 

  119. N. S. Efremov, E. A. Mityushov, and S. A. Berestova, “Auxetic properties of spatially reinforced composites,” in: Mechanics of Microscopically Heterogeneous Materials and Fracture, Abstracts of 5th All-Union Conf. (Ekaterinburg, March 24–28, 2008), Inst. Machine Building, Ural Branch, Russian Acad. of Sci. (2008), p. 208.

  120. D A. Konek, K. V. Voitsekhovskii, Yu. M. Pleskachevskii, and S. V. Shil’ko, “Materials with negative poisson’s ratios (review),” Mekh. Kompoz. Mater. Konstr., 10, No. 1, 35–69 (2004).

    Google Scholar 

  121. V. V. Savrasov, “On the limiting values of Poisson’s ratio of the classical isotropic deformable solid,” in: Issues of Mechanics of Deformable Solids (collected scientific papers) [in Russian], Issue 4, Khar’kov (1983), pp. 132–135.

  122. R. Baerheim, “Harmonic decomposition of the anisotropic elasticity tensor,” Quart. J. Mech. Appl. Math., 46, No. 3, 391–418 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  123. G. Backus, “A geometrical picture of anisotropic elastic tensors,” Rev. Geophys. Space Phys., 8, No. 3, 633–671 (1970).

    Article  ADS  Google Scholar 

  124. S. C. Cowin, “Properties of the anisotropic elasticity tensor,” Quart. J. Mech. Appl. Math., 42, No. 2, 249–266 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  125. S. C. Cowin, “Corrigendum: Properties of the anisotropy elasticity tensor,” Quart. J. Mech. Appl. Math., 46, No. 3, 541–542 (1993).

    MathSciNet  Google Scholar 

  126. Y. Surrel, “A new description of the tensors of elasticity based upon irreducible representations,” Europ. J. Mech., A: Solids, 12, No. 2, 219–235 (1993).

    MATH  MathSciNet  Google Scholar 

  127. L. J. Walpole, “Fourth-rank tensors of the thirty-two crystal classes: multiplication tables,” Proc. Roy. Soc., London, Ser. A, 391, No. 1800, 149–179 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  128. Q.-S. Zheng and W.-N. Zou, “Irreducible decompositions of physical tensors of high orders,” J. Eng. Math., 37, No. 1–3, 273–288 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  129. P. Podio-Guidugli and E. G. Virga, “Transversely isotropic elasticity tensors,” Proc. Roy. Soc. London, 411, No. 1840, 85–93 (1987).

    MATH  ADS  MathSciNet  Google Scholar 

  130. E. F. Onat, “Effective properties of elastic materials that contain penny shaped voids,” Int. J. Eng. Sci., 22, Nos. 8–10, 1013–1021 (1984).

    Article  MATH  Google Scholar 

  131. E. Mochizuki, “Spherical harmonic decomposition of an elastic tensor,” Geophys. J., 93, No. 3, 521–526 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  132. Yu. I. Sirotin, “On the theory of ideal elastoplasticity of crystals,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 39–47 (1970).

  133. B. E. Pobedrya, Lectures in Tensor Analysis [in Russian], Izd. Mosk. Univ., Moscow (1979).

    Google Scholar 

  134. B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Mosk. Univ., Moscow (1984).

    MATH  Google Scholar 

  135. J. A. Schouten, Tensor Analysis for Physicists, Clarendon, Oxford (1964).

    Google Scholar 

  136. Yu. I. Sirotin, “Decomposition of material tensors into irreducible elements,” Kristallografiya, 19, No. 5, 909–915 (1974).

    Google Scholar 

  137. J. Pratz, “Décomposition canonique des tenseurs de rang 4 de l’élasticité,” J. Méc. Théor. et Appl., 2, No. 6, 893–913 (1983).

    MATH  MathSciNet  Google Scholar 

  138. M. J. P. Musgrave, “On the constraints of positive-definite strain energy in anisotropic elastic media,” Quart. J. Mech. Appl. Math., 43, No. 4, 605–621 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  139. Sutcu Muzaffer, “Orthotropic and transversely isotropic stress-strain relations with built-in coordinate transformations,” Int. J. Solids Struct., 29, No. 4, 503–518 (1992).

    Article  MATH  Google Scholar 

  140. A. N. Norris, “On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes,” Quart. J. Mech. Appl. Math., 42, No. 3, 413–426 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  141. P. Chadwick and A. N. Norris, “Conditions under which the slowness surface of an anisotropic elastic material is the union of aligned ellipsoids,” Quart. J. Mech. Appl. Math., 43, No. 4, 589–603 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  142. R. Burridge, P. Chadwick, and A. N. Norris, “Fundamental elastodynamic solutions for anisotropic media with ellipsoidal slowness surfaces,” Proc. Roy. Soc. London, Ser. A, 440, No. 1910, 655–681 (1993).

    MATH  ADS  MathSciNet  Google Scholar 

  143. P. M. Bakker, “About the completeness of the classification of cases of elliptic anisotropy,” Proc. Roy. Soc. London, Ser. A, 451, No. 1942, 367–373 (1995).

    MATH  ADS  MathSciNet  Google Scholar 

  144. T. C. T. Ting, “Invariants of anisotropic elastic constants,” Quart. J. Mech. Appl. Math., 40, No. 3, 431–448 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  145. H. T. Hahn, “A derivation of invariants of fourth rank tensors,” J. Compos. Mater., 8, No. 1, 2–14 (1974).

    Article  Google Scholar 

  146. J. Betten and W. Helisch, “Irreduzible Invarianten eines Tensors vierter Stufe,” Z. Angew. Math. Mech., 72, No. 1, 45–57 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  147. J. P. Boehler, A. A. Kirillov, and E. T. Onat, “On the polynomial invariants of the elasticity tensor,” J. Elast., 34, No. 2, 97–110 (1994).

    MATH  MathSciNet  Google Scholar 

  148. Liu I-Shin, “On representations of anisotropic invariants,” Int. J. Eng. Sci., 20, No. 10, 1099–1109 (1982).

    Article  Google Scholar 

  149. T. P. Srinivasan and S. D. Nigam, “Invariant elastic constants for crystals,” J. Math. Mech., 19, No. 5, 411–420 (1969).

    Google Scholar 

  150. G. Verchery, “Les invariants des tenseurs d’ordre 4 du type de l’élasticité,” Colloq. Int. CNPS, No. 295, 93–104 (1982).

    Google Scholar 

  151. M. Vianello, “An integrity basis for plane elasticity tensors,” Arch. Mech., 49, No. 1, 197–208 (1997).

    MATH  MathSciNet  Google Scholar 

  152. Ahmad Faiz, “Invariants and structural invariants of the anisotropic elasticity tensor,” Quart. J. Mech. Appl. Math., 55, No. 4, 597–606 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  153. T. C. T. Ting, “Anisotropic elastic constants that are structurally invariant,” Quart. J. Mech. Appl. Math., 53, No. 4, 511–523 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  154. G. F. Smith and G. Bao, “Isotropic invariants of traceless symmetric tensors of three and four,” Int. J. Eng. Sci., 35, No. 15, 1457–1462 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  155. A. M. Sadegh and S. C. Cowin, “The proportional anisotropic elastic invariants,” Trans. ASME, J. Appl. Mech., 58, No. 1, 50–57 (1991).

    Google Scholar 

  156. S. Forte and M. Vianello, “Functional bases for transversely isotropic and transversely hemitropic invariants of elasticity tensors,” Quart. J. Mech. Appl. Math., 51, No. 4, 543–552 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  157. J. Betten and W. Helisch, “Integrity bases for a fourth-rank tensor,” in: Anisotropy, Inhomogeneity, and Nonlinearity in Solid Mechanics, Proc. of the IUTAM-ISIMM Symp. (Nottingham, August 30 to September 3, 1994), Kluwer Acad. Publ., Dordrecht (1995), pp. 37–42.

    Google Scholar 

  158. V. A. Kuz’menko, “On the limiting values of Poisson’s ratio,” Probl. Prochn., No. 11, 96–99 (1985).

    Google Scholar 

  159. P. S. Theocaris and F. P. Philippidis, “True bounds on Poisson’s ratio for transversely isotropic solids,” J. Strain Anal. Eng. Design, 27, No. 1, 43–44 (1992).

    Article  Google Scholar 

  160. P. S. Theocaris, “The limits of Poisson’s ratio in polycrystalline bodies,” J. Mater. Sci., 29, No. 13, 3527–3534 (1994).

    Article  ADS  Google Scholar 

  161. M. Hayes and A. Shuvalov, “On the extreme values of Young’s modulus, the shear modulus, and Poison’s ratio for cubic materials,” Trans. ASME, J. Appl. Mech., 65, No. 3, 786–787 (1998).

    MathSciNet  Google Scholar 

  162. T. C. T. Ting and T. Chen, “Poisson’s ratio for anisotropic elastic materials can have no bounds,” Quart. J. Mech. Appl. Math., 58, No. 1, 73–82 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  163. T. C. T. Ting and D. M. Barnett, “Negative Poisson’s ratios in anisotropic linear elastic media,” Trans. ASME, J. Appl. Mech., 72, No. 6, 929–931 (2005).

    MATH  MathSciNet  Google Scholar 

  164. B. D. Annin, S. V. Smirnov, and V. A. Annenkov, “Identification of anisotropic materials,” in: Problems of Mechanics of Deformable Solids (collected scientific papers) [in Russian], Izd. St. Petersburg. Univ., St. Petersburg (2002). pp. 21–28.

    Google Scholar 

  165. G. B. Gurevich, Fundamentals of the Theory of Algebraic Invariants [in Russian], Gostekhteoretizdat, Moscow (1948).

    Google Scholar 

  166. J. Rychlewski, “Unconventional approach to linear elasticity,” Arch. Mech., 47, No. 2, 149–171 (1995).

    MATH  MathSciNet  Google Scholar 

  167. J. Rychlewski, “A qualitative approach to Hooke’s tensors. Part 1,” Arch. Mech., 52, No. 45, 737–759 (2000).

    MATH  MathSciNet  Google Scholar 

  168. J. Rychlewski, “A qualitative approach to Hooke’s tensors. Part 2,” Arch. Mech., 53, No. 1, 45–63 (2001).

    MATH  MathSciNet  Google Scholar 

  169. N. I. Ostrosablin, “Linear invariant irreducible decompositions of the fourth-rank tensor of the elasticity moduli,” in: Dynamics of Continuous Media (collected scientific papers) [in Russian], No. 120, Inst. of Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (2002), pp. 149–160.

    Google Scholar 

  170. B. D. Annin, “A generalization of Huber criterion,” in: Abstracts of the Int. Symp. on Developments in Plasticity and Fracture. Centenary of M. T. Huber Criterion, Cracov, August 12–14 (2004), p. 13.

  171. N. I. Ostrosablin, “Affine transformations of the equations of the linear theory of elasticity,” J. Appl. Mech. Tech. Phys., 47, No. 4, 564–572 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  172. N. I. Ostrosablin, “Invariant elasticity constants and constituting relations for elastic media,” in: Differential Equations, Theory of Functions, and Applications, Abstracts of the Int. Conf. Devoted to the 100th Anniversary of Acad. I. N. Vekua (Novosibirsk, May 28 to June 2, 2007), Novosibirsk State Univ. (2007), pp. 523–524.

  173. J. Rychlewski, “Elastic waves under unusual anisotropy,” J. Mech. Phys. Solids, 49, No. 11, 2651–2666 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  174. J. Rychlewski, “Elastic waves under unusual anisotropy,” in: Proc. of the 3rd Int. Conf. Nonlinear Mechanics (Shanghai, August 17–20, 1998), S. n., Shanghai (1998), pp. 101–102.

  175. N. I. Ostrosablin, “Eigenoperators and eigenvectors for a system of differential equations of the linear theory of elasticity of anisotropic materials,” Dokl. Ross. Akad. Nauk, 337, No. 5, 608–610 (1994).

    MathSciNet  Google Scholar 

  176. N. I. Ostrosablin, “On equations of the liner theory of elasticity of anisotropic materials reduced to three independent wave equations,” J. Appl. Mech. Tech. Phys., 35, No. 6, 949–956 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  177. N. I. Ostrosablin, “Elastic anisotropic material with purely longitudinal and transverse waves,” J. Appl. Mech. Tech. Phys., 44, No. 2, 271–278 (2003).

    Article  MathSciNet  Google Scholar 

  178. N. I. Ostrosablin, “Purely transverse waves in elastic anisotropic media,” J. Appl. Mech. Tech. Phys., 46, No. 1, 129–140 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  179. A. S. Kravchuk, “On the theory of plasticity of anisotropic materials,” in: Strength Calculations (collected scientific papers) [in Russian], Issue 27, Mashinostroenie, Moscow (1986), pp. 21–29.

    Google Scholar 

  180. A. S. Kravchuk, V. P. Maibiroda, and Yu. S. Urzhumtsev, Mechanics of Polymer and Composite Materials. Experimental and Numerical Methods [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  181. O. S. Sadakov, V. N. Madulin, and M. V. Apaichev, “The simplest variant of the strain theory of plasticity of anisotropic materials,” Chelyabinsk (1990). Deposited at VINITI 06.14.90, No. 3424-B90.

  182. B. E. Pobedrya, “Theory of plasticity of anisotropic materials,” in: Applied Problems of Strength and Plasticity (collected scientific papers) [in Russian], No. 26, Gor’kii Univ., Gor’kii (1984), pp. 110–115.

    Google Scholar 

  183. B. E. Pobedrya, “Theory of the flow of an anisotropic medium,” in: Strength, Plasticity, and Viscous Elasticity of Materials and Structures [in Russian], Ural Sci. Center, USSR Acad. of Sci., Sverdlovsk (1986), pp. 101–108.

    Google Scholar 

  184. B. E. Pobedrya, “On the theory of plasticity of transversely isotropic materials,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 96–101 (1990).

  185. M. V. Apajchev, V. N. Madudin, and O. S. Sadakov, “On mathematical modelling of inelastic deformation behavior of anisotropic media,” in: Trans. of the 10th Int. Conf. Structural Mechanics in Reactor Technology (Anaheim, August 14–18, 1989), Vol. 50, Los Angeles (1989), pp. 25–29.

  186. Z. Szabó, “On the eigenvalue of the fourth-order constitutive tensor and loss of strong ellipticity on elastoplasticity,” Int. J. Plast., 13, No. 10, 809–835 (1997).

    Article  MATH  Google Scholar 

  187. A. Bertram and J. Olschewski, “Zur Formulierung anisotroper linear anelastischer Stoffgleichungen mit Hilfe einer Projektionsmethode,” Z. Angew. Math. Mech., 73, Nos. 4/5, T401–T403 (1993).

    MATH  Google Scholar 

  188. A. I. Chanyshev, Ya. A. Afinogenov, A. Yu. Polyakov, and N. N. Chernov, “Elasticity and inelasticity of initially anisotropic media. New ideas and concepts,” Model. Mekh., 6, No. 4, 57–62 (1992).

    Google Scholar 

  189. A. I. Chanyshev, “Block-type phenomenological mechanical model of an element of a deformable medium,” Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 4, 12–23 (1999).

  190. A. I. Chanyshev, “On the shape and content of an element of a deformable medium,” in: Analytical and Numerical Research in Rock Mechanics, Mining Inst., Sib. Div., USSR Acad. of Sci. (1986), pp. 122–125.

  191. I. N. Matchenko, “Elastic and plastic eigenstates of anisotropic media,” Author’s Abstract, Doct. Dissertation in Phys.-Math. Sci., Cheboksary (2004).

  192. S. A. Berestova and E. A. Mityushev, “On physical equations of the theory of the plastic flow of anisotropic metals,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 96–105 (2004).

  193. B. D. Annin, “Models of elastoplastic deformation of transversely isotropic materials,” Sib. Zh. Indust. Mat., 2, No. 2, 3–7 (1999).

    MATH  MathSciNet  Google Scholar 

  194. B. D. Annin and V. M. Zhigalkin, Behavior of Materials Under Complex Loading [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (1999).

    Google Scholar 

  195. J. Rychlewski, “Decomposition of elastic energy and limit criteria,” Usp. Mekh. (Varshava), 7,Issue 3, 51–80 (1984).

    Google Scholar 

  196. E. Zywick, “On the equivalence of stress and strain based failure criteria in elastic media,” Europ. J. Mech., A: Solids, 18, No. 3, 391–398 (1999).

    Article  ADS  Google Scholar 

  197. J. Ostrowska-Maciejewska and J. Rychlewski, “Plane elastic and limit states in anisotropic solids,” Arch. Mech., 40, No. 4, 379–386 (1998).

    MathSciNet  Google Scholar 

  198. K. Kowalczyk, J. Ostrowska-Maciejewska, and R. B. Pecherski, “An energy-based yield criterion for solids of cubic elasticity and orthotropic limit state,” Arch. Mech., 55, Nos. 5/6, 431–448 (2003).

    MATH  Google Scholar 

  199. K. Kowalczyk and J. Ostrowska-Maciejewska, “Energy-based limit criteria for anisotropic elastic materials,” Arch. Mech., 57, Nos. 2/3, 133–155 (2005).

    MATH  Google Scholar 

  200. K. Kowalczyk and J. Ostrowska-Maciejewska, “Energy-based limit condition for transversally isotropic solids,” Arch. Mech., 54, Nos. 5/6, 497–523 (2002).

    MATH  MathSciNet  Google Scholar 

  201. Y. P. Arramon, M. M. Mehrabadi, D. W. Martin, and S. C. Cowin, “A multidimensional anisotropic strength criterion based on Kelvin modes,” Int. J. Solids Struct., 37, No. 21, 2915–2935 (2000).

    Article  MATH  Google Scholar 

  202. S. Ya. Makovenko, “On the limits of variation of the Mises-Hill strength tensor components,” in: Problems of Theory and Practice in Engineering Research, Proc. 33th Conf. of the Peoples’ Friendship University of Russia (Moscow, April 21–25, 1997), Peoples’ Friendship University of Russia, Moscow (1997), pp. 126–128.

    Google Scholar 

  203. J. Rychlewski and Heng Xiao, “Elasticity models of multidirectional composites with strong fibres,” Adv. Mech., 14, No. 1, 41–78 (1991).

    MathSciNet  Google Scholar 

  204. P. Podio-Guidugli and M. Vianello, “Internal constraints and linear constitutive relations for transversely isotropic materials,” Rend. Lincei. Mat. Appl., Ser. 9, 2, No. 3, 241–248 (1991).

    MATH  MathSciNet  Google Scholar 

  205. K. Kowalczyk and J. Ostrowska-Maciejewska, “The influence of internal restrictions on the elastic properties of anisotropic materials,” Arch. Mech., 56, No. 3, 205–232 (2004).

    MATH  MathSciNet  Google Scholar 

  206. C. A. Felippa and E. Oñate, “Volumetric constraint models for anisotropic elastic solids,” Trans. ASME, J. Appl. Mech., 71, No. 5, 731–734 (2004).

    Article  MATH  Google Scholar 

  207. A. A. Markin and M. Yu. Sokolova, “Nonlinear relations of anisotropic elasticity and partial postulate of isotropy,” Prikl. Mat. Mekh., 71,Issue 4, 587–594 (2007).

    MathSciNet  MATH  Google Scholar 

  208. P. A. Zinov’ev and S. V. Tsvetkov, “Invariant-polynomial criterion of strength of anisotropic materials,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 140–147 (1994).

  209. E. M. Wu, “Phenomenological criteria of fracture of anisotropic media,” in: Mechanics of Composite Materials [Russian translation], Mir, Moscow (1978), pp. 401–491.

    Google Scholar 

  210. G. Sendetski, “Some issues of the theory of elasticity of an anisotropic solid,” in: Composite Materials, Vol. 7: Analysis and Design of Structures. Part 1 [in Russian], Mashinostroenie, Moscow (1978), pp. 13–61.

    Google Scholar 

  211. Guo Shao-hua, “Eigen-elastic mechanics and its variation principle,” Trans. Nonferrous Metals Soc. China, 11, No. 2, 283–286 (2001).

    Google Scholar 

  212. Guo Shao-hua, “Eigen theory of elastic mechanics for anisotropic solids,” Trans. Nonferrous Metals Soc. China, 10, No. 2, 217–219 (2000).

    Google Scholar 

  213. Guo Shao-hua, “Eigen theory of elastic dynamics for anisotropic solids,” Trans. Nonferrous Metals Soc. China, 9, No. 2, 327–331 (1999).

    Google Scholar 

  214. A. Cazzani and M. Rovati, “Extrema of Young’s modulus for elastic solids with tetragonal symmetry,” Int. J. Solids Struct., 42, Nos. 18/19, 5057–5096 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  215. A. Cazzani and M. Rovati, “Extrema of Young’s modulus for cubic and transversely isotropic solids,” Int. J. Solids Struct., 40, No. 7, 1713–1744 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  216. V. A. Kalinin and I. O. Bayuk, “Thermodynamic constraints on the effective elasticity moduli of anisotropic rocks,” Fiz. Zemli, No. 1, 10–17 (1994).

    Google Scholar 

  217. G. Wei and S. F. Edvards, “Poisson’s ratio in composites of auxetics,” Phys. Rev., E, 58, No. 5b, 6173–6181 (1998).

    Article  ADS  Google Scholar 

  218. T. C. T. Ting, “On anisotropic elastic materials for which Young’s modulus E(n) is independent of n or the shear modulus G(n,m) is independent of n and m,” J. Elast., 81, No. 3, 271–292 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  219. P. Boulanger and M. Hayes, “On Young’s modulus for anisotropic media,” Trans. ASME, J. Appl. Mech., 62, No. 3, 819–820 (1995).

    MATH  MathSciNet  Google Scholar 

  220. A. Blinowski and J. Rychlewski, “Pure shears in the mechanics of materials,” Math. Mech. Solids, 3, No. 4, 471–503 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  221. C. E. Truman, “An introduction to tensor elasticity,” Strain, 39, No. 4, 161–165 (2003).

    Article  Google Scholar 

  222. P. S. Theocaris and D. P. Sokolis, “Elastic eigenstates for an orthotropic medium,” Dokl. Bulgar. Akad. Nauk, 53, No. 3, 45–50 (2000).

    Google Scholar 

  223. P. S. Theocaris and D. P. Sokolis, “Spectral decomposition of the compliance fourth-rank tensor for orthotropic materials,” Arch. Appl. Mech., 70, No. 3, 289–306 (2000).

    Article  MATH  Google Scholar 

  224. A. M. Sadegh, S. C. Cowin, and G. M. Luo, “Inversions related to the stress-strain-fabric relationship,” Mech. Mater., 11, No. 4, 323–336 (1991).

    Article  Google Scholar 

  225. J. Rychlewski and Jin Min Zhang, “Anisotropy degree of elastic materials,” Arch. Mech. Stos., 41, No. 5, 697–715 (1989).

    MATH  MathSciNet  Google Scholar 

  226. J. Rychlewski, “On the detectability of constitutive laws in solid mechanics and physics,” in: Elasticity and Inelasticity [in Russian], Izd. Mosk. Gos. Univ, Moscow (2001), pp. 67–73.

    Google Scholar 

  227. J. Rychlewski, “Anisotropy and proper states of materials,” in: Anisotropy, Inhomogeneity, and Nonlinearity in Solid Mechanics, Proc. of the IUTAM-ISIMM Symp. (Nottingham, August 30 to September 3, 1994), Kluwer Acad. Publ., Dordrecht (1995), pp. 19–24.

    Google Scholar 

  228. J. Rychlewski, “Zur Abshatzung der Anisotropie,” Z. Angew. Math. Mech., 65, No. 6, 255–258 (1985).

    Article  MathSciNet  Google Scholar 

  229. J. Rychlewski, “On thermoelastic constants,” Arch. Mech. Stos., 36, No. 1, 77–95 (1984).

    MATH  MathSciNet  Google Scholar 

  230. J. Ostrowska-Maciejewska and J. Rychlewski, “Generalized proper states for anisotropic elastic materials,” Arch. Mech. Stos., 53, Nos. 4/5, 501–518 (2001).

    MATH  MathSciNet  Google Scholar 

  231. N. I. Ostrosablin, “Canonical form of equations of a plane static problem of anisotropic elasticity,” in: Problems of Mechanics of Continuous Media and Physics of Explosion, Abstracts of All-Russia Conf. Devoted to the 50th Anniversary of the Lavrent’ev Inst. of Hydrodynamics, Sib. Div., Russian Acad. of Sci. (Novosibirsk, September 17–22, 2007), Inst. Hydrodynamics, Novosibirsk (2007), p. 136.

    Google Scholar 

  232. M. M. Mehrabadi, S. C. Cowin, and C. O. Horgan, “Strain energy density bounds for linear anisotropic materials,” J. Elast., 30, No. 2, 191–196 (1993).

    MATH  MathSciNet  Google Scholar 

  233. M. Dutta and L. M. Saha, “On the number of elastic coefficients of general aeolotropic bodies,” Indian. J. Phys., 45, No. 3, 140–142 (1971).

    Google Scholar 

  234. S. C. Cowin, M. M. Mehrabadi, and A. M. Sadegh, “Kelvin formulation of the anisotropic Hooke’s law,” in: Modern Theory of Anisotropic Elasticity and Applications, SIAM, Filadelphia (1991), pp. 340–356.

    Google Scholar 

  235. S. C. Cowin, “Propagation of Kelvin modes,” Math. Mech. Solids, 1, No. 1, 25–43 (1996).

    MATH  ADS  MathSciNet  Google Scholar 

  236. P. Boulanger and M. Hayes, “Universal relations for wave propagation in crystal,” Quart. J. Mech. Appl. Math., 44, No. 2, 235–240 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  237. I. Yu. Tsvelodub, “Determining the elastic characteristics of homogeneous anisotropic bodies,” J. Appl. Mech. Tech. Phys., 35, No. 3, 455–458 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  238. J. Rychlewski, “On non-collinearity of elastic strains and stresses,” Izv. Akad Nauk SSSR, Mekh. Tverd. Tela, No. 2, 101–105 (1985).

  239. J. Rychlewski, “On uniqueness of the structural formula of an elastic solid,” Teor. Prikl. Mekh. (Bolgar.), 15, No. 3, 39–44 (1984).

    MathSciNet  Google Scholar 

  240. N. Yu. Odintsova, “Mathematical and physical structure of polycrystalline elastic solids,” Author’s Abstract of Candidate’s Dissertation in Phys.-Math. Sci., Ekaterinburg (2003).

  241. N. H. Scott, “An area modulus of elasticity: definition and properties,” J. Elast., 58, No. 3, 269–275 (2000).

    Article  MATH  Google Scholar 

  242. Q.-C. He and A. Curnier, “Characterising a 2d elasticity tensor by two orientation distribution functions,” in: Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, Proc. of the IUTAM-ISIMM Symp. (Nottingham, U.K., August 30 to 3 September, 1994), Kluwer Acad. Publ., Dordrecht (1995), p. 25–30.

    Google Scholar 

  243. Q.-C. He, “A remarkable tensor in plane linear elasticity,” Trans. ASME, J. Appl. Mech., 64, No. 3, 704–707 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  244. J. Betten, “Integrity basis for a second-order and a fourth-order tensor,” Int. J. Math. Math. Sci., 5, No. 1, 87–96 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  245. N. I. Ostrosablin, “Decomposition of the third-rank and fourth-rank tensors into irreducible parts and purely transverse waves inelastic media,” in: Proc. All-Russia Workshop on Advanced Problems in Mechanics of Deformable Solids (Novosibirsk, October 13–17, 2003), Novosibirsk State Tech. Univ. (2003), pp. 166–171.

  246. J. P. Jaric, “On the representation of symmetric isotropic 4-tensors,” J. Elast., 51, No. 1, 73–79 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  247. M. Moakher, “Fourth-order cartesian tensors: old and new facts, notions and applications,” Quart. J. Mech. Appl. Math., 61, No. 2, 181–203 (2008).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Annin.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 6, pp. 131–151, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annin, B.D., Ostrosablin, N.I. Anisotropy of elastic properties of materials. J Appl Mech Tech Phy 49, 998–1014 (2008). https://doi.org/10.1007/s10808-008-0124-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-008-0124-1

Key words

Navigation