Skip to main content
Log in

Nonzero Kronecker Coefficients and What They Tell us about Spectra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A triple of spectra (r A, r B, r AB) is said to be admissible if there is a density operator ρ AB with

\(({\rm Spec} \rho^{A}, {\rm Spec} \rho^{B}, {\rm Spec} \rho^{AB})=(r^A, r^B, r^{AB})\).

How can we characterise such triples? It turns out that the admissible spectral triples correspond to Young diagrams (μ, ν, λ) with nonzero Kronecker coefficient g μνλ [5, 14]. This means that the irreducible representation of the symmetric group V λ is contained in the tensor product of V μ and V ν . Here, we show that such triples form a finitely generated semigroup, thereby resolving a conjecture of Klyachko [14]. As a consequence we are able to obtain stronger results than in [5] and give a complete information-theoretic proof of the correspondence between triples of spectra and representations. Finally, we show that spectral triples form a convex polytope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicki R., Rudnicki S., Sadowski S. (1988). Symmetry properties of product states for the system of N n-level atoms. J. Math. Phys. 29(5): 1158–1162

    Article  ADS  MathSciNet  Google Scholar 

  2. Berenstein A., Sjamaar R. (2000). Coadjoint orbits, moment polytopes and the Hilbert-Mumford criterion. J. Amer. Math. Soc. 13(2): 433–466

    Article  MathSciNet  Google Scholar 

  3. Carter, R., Segal, G., MacDonald, I.: Lectures on Lie Groups and Lie Algebras. Volume 32 of London Mathematical Society Student Texts. 1st edition, Cambridge Univ. Press, (1995)

  4. Christandl, M.: The Structure of Bipartite Quantum States: Insights from Group Theory and Cryptography. PhD thesis, University of Cambridge, February 2006. Available at http://arxiv.org/abs/quant-ph/0604183, 2001

  5. Christandl M., Mitchison G. (2005). The spectra of density operators and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 261(3): 789–797

    Article  ADS  MathSciNet  Google Scholar 

  6. Elashvili A.G. (1992). Invariant algebras. Advances in Soviet Math. 8: 57–64

    MathSciNet  Google Scholar 

  7. Franz M. (2002). Moment polytopes of projective G-varieties and tensor products of symmetric group representations. J. Lie Theory 12: 539–549

    MathSciNet  Google Scholar 

  8. Fulton W., Harris J. (1991). Representation Theory: A First Course. Springer, New York

    MATH  Google Scholar 

  9. Harrow, A.: Applications of coherent classical communication and the Schur transform to quantum information theory. Thesis, Doctor of philosophy in physics, Massachusetts Institute of Technology, September 2005, available at http://arxiv.org/abs/quant-ph/0512255, 2005

  10. Hayashi M., Matsumoto K. (2002). Quantum universal variable-length source coding. Phys. Rev. A 66(2): 022311

    Article  ADS  MathSciNet  Google Scholar 

  11. Heckman G.J. (1982). Projections of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups. Invent. Math. 67: 333–356

    Article  ADS  MathSciNet  Google Scholar 

  12. Keyl M., Werner R.F. (2001). Estimating the spectrum of a density operator. Phys. Rev. A 64(5): 052311

    Article  ADS  MathSciNet  Google Scholar 

  13. Kirillov, A.N.: An invitation to the generalized saturation conjecture. http://arxiv.org/abs/ math.CO/0404353, 2004

  14. Klyachko, A.: Quantum marginal problem and representations of the symmetric group http:// arxiv.org/list/quant-ph/0409113, 2004

  15. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, Volume 34 of Ergebnisse der Mathematic und ihrer Grenzgebiete (2). Third edition, Berlin: Springer-Verlag, (1994)

  16. Ness L. (1984). A stratification of the null cone via the moment map. Amer. J. Math. 106: 1281–1329

    Article  MathSciNet  Google Scholar 

  17. Pinsker, M.S.: Information and Information Stability of Random Variables and Processes. San Francisco: Holden-Day, 1964

  18. Popov, V.L., Vinberg, E.B.: Algebraic Geometry IV. Volume 55 of Encyclopaedia of Mathematical Sciences, Chapter II. Invariant Theory, Berlin-Heidelberg-New York: Springer-Verlag 1994, pp. 123–278

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Christandl.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christandl, M., Harrow, A.W. & Mitchison, G. Nonzero Kronecker Coefficients and What They Tell us about Spectra. Commun. Math. Phys. 270, 575–585 (2007). https://doi.org/10.1007/s00220-006-0157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0157-3

Keywords

Navigation