Skip to main content
Log in

Anodized TiO2 nanotubes using Ti wire in fluorinated ethylene glycol with air bubbles for removal of methylene blue dye

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

TiO2 nanotubes (TNTs) with self-aligned 7.25 ± 0.51-µm length, 66.78 ± 4.18-nm diameter, and 41.48 ± 4.31-nm wall thickness were fabricated using Ti wire in an anodic process using an ethylene glycol (EG)/NH4F–air bubbles electrolyte. The possible growth of TNTs in the electrolyte with different water content was explored. It was found that the growth rate of TNTs in an electrolyte with air bubbles and no water content was significantly faster than that in an electrolyte with 1–5-vol% water content. The degradation of methylene blue (MB) dye with sodium borohydride (NaBH4) as the sacrificial reagent (hole scavenger) under ultraviolet (UV) irradiation was investigated in a photocatalytic study of 400 °C annealed optimized TNTs. The results showed that TNTs can reduce MB at approximately 99%, 74%, and 40% removal efficiency using the first, second, and third cycles, respectively, for 70-min reaction time each. A kinetic study revealed that the photoreduction process followed the pseudo-first-order kinetic with reaction rates of 0.0280, 0.0213, and 0.0052 min−1 for the first, second, and third cycles, respectively. This study’s findings will provide new insights into the design of UV light induced on anodized TNTs using Ti wire in EG/NH4F electrolytes with air bubbles aided by NaBH4 for the degradation of MB dye.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rosli SA, Alias N, Bashirom N, Ismail S, Tan WK, Kawamura G, Matsuda A, Lockman Z (2021) Hexavalent chromium removal via photoreduction by sunlight on titanium–dioxide nanotubes formed by anodization with a fluorinated glycerol–water electrolyte. Catalysts 11(3):376. https://doi.org/10.3390/catal11030376

    Article  CAS  Google Scholar 

  2. Byrne C, Subramanian G, Pillai SC (2017) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6(3):3531–3555. https://doi.org/10.1016/j.jece.2017.07.080

    Article  CAS  Google Scholar 

  3. Abdullah M, Kamarudin SK (2017) Titanium dioxide nanotubes (TNT) in energy and environmental applications: an overview. Renew Sustain Energy Rev 76(Supplement C):212–225. https://doi.org/10.1016/j.rser.2017.01.057

    Article  CAS  Google Scholar 

  4. Kar A, Smith YR, Subramanian V (2009) Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ Sci Technol 43(9):3260–3265. https://doi.org/10.1021/es8031049

    Article  CAS  PubMed  Google Scholar 

  5. Hossain M, Biswas S, Takahashi T, Kubota Y, Fujishima A (2008) Influence of direct current power on the photocatalytic activity of facing target sputtered TiO2 thin films. Thin Solid Films 517(3):1091–1095. https://doi.org/10.1016/j.tsf.2008.06.020

    Article  CAS  Google Scholar 

  6. Macák JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 44(14):2100–2102. https://doi.org/10.1002/anie.200462459

    Article  CAS  Google Scholar 

  7. Xie YB (2006) Photoelectrochemical application of nanotubular titania photoanode. Electrochim Acta 51(17):3399–3406. https://doi.org/10.1016/j.electacta.2005.10.003

    Article  CAS  Google Scholar 

  8. Mehedi IM, Hossain MF, Takahashi T, Islam MS (2017) Nano-structural variation of highly aligned anodic Titania nanotube arrays for gas phase photocatalytic application. J Photochem Photobiol A Chem 335(Supplement C):200–210. https://doi.org/10.1016/j.jphotochem.2016.11.019

    Article  CAS  Google Scholar 

  9. Fatichi AZ, Mello MG, Caram R, Cremasco A (2019) Self-organized TiO2 nanotube layer on Ti–Nb–Zr alloys: Growth, characterization, and effect on corrosion behavior. J Appl Electrochem 49(11):1079–1089. https://doi.org/10.1007/s10800-019-01345-8

    Article  CAS  Google Scholar 

  10. Chen J, Guo M, Su H, Zhang J, Liu L, Huang H, Xie K (2018) Improving the efficiency of dye-sensitized solar cell via tuning the Au plasmons inlaid TiO2 nanotube array photoanode. J Appl Electrochem 48(10):1139–1149. https://doi.org/10.1007/s10800-018-1220-4

    Article  CAS  Google Scholar 

  11. Zhou P, Wan J, Wang X, Chen J, Gong Y, Xu K, Liu C (2021) Preparation and electrochemical property of TiO2/porous carbon composite cathode derived from waste tea leaves for electrocatalytic degradation of phenol. J Appl Electrochem 51(4):653–667. https://doi.org/10.1007/s10800-020-01527-9

    Article  CAS  Google Scholar 

  12. Aflaki S, Farhadian M, Nazar ARS, Tangestaninejad S, Davari N (2021) Investigation of copper plates as anode and TiO2/glycine/ZnFe2O4 stabilized on graphite as cathode for textile dyes degradation from aqueous solution under visible light. J Appl Electrochem. https://doi.org/10.1007/s10800-021-01580-y

    Article  Google Scholar 

  13. Senthilkumara R, Gnanavelb B (2020) Role of microwave on structural, morphological, optical and photocatalytic properties of TiO2 nanoparticles. Int J Adv Sci Eng. https://doi.org/10.29294/IJASE.6.3.2020.1399-1407

    Article  Google Scholar 

  14. Wu F, Xu J, Tian Y, Hu Z, Wang L, Xian Y, Jin L (2008) Direct electrochemistry of horseradish peroxidase on TiO2 nanotube arrays via seeded-growth synthesis. Biosens Bioelectron 24(2):198–203. https://doi.org/10.1016/j.bios.2008.03.031

    Article  CAS  PubMed  Google Scholar 

  15. Youssef L, Roualdes S, Bassil J, Zakhour M, Rouessac V, Lamy C, Nakhl M (2019) Effect of plasma power on the semiconducting behavior of low-frequency PECVD TiO2 and nitrogen-doped TiO2 anodic thin coatings: photo-electrochemical studies in a single compartment cell for hydrogen generation by solar water splitting. J Appl Electrochem 49(2):135–150. https://doi.org/10.1007/s10800-018-1265-4

    Article  CAS  Google Scholar 

  16. McNeary WW, Linico AE, Ngo C, van Rooij S, Haussener S, Maguire ME, Pylypenko S, Weimer AW (2018) Atomic layer deposition of TiO2 for stabilization of Pt nanoparticle oxygen reduction reaction catalysts. J Appl Electrochem 48(9):973–984. https://doi.org/10.1007/s10800-018-1226-y

    Article  CAS  Google Scholar 

  17. Borbón-Nuñez HA, Dominguez D, Muñoz-Muñoz F, Lopez J, Romo-Herrera J, Soto G, Tiznado H (2017) Fabrication of hollow TiO2 nanotubes through atomic layer deposition and MWCNT templates. Powder Technol 308(Supplement C):249–257. https://doi.org/10.1016/j.powtec.2016.12.001

    Article  CAS  Google Scholar 

  18. Momeni MM, Hosseini MG (2014) Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J Mater Sci 25(11):5027–5034. https://doi.org/10.1007/s10854-014-2267-6

    Article  CAS  Google Scholar 

  19. Momeni MM (2015) Study of synergistic effect among photo-, electro-, and sonoprocesses in photocatalyst degradation of phenol on tungsten-loaded titania nanotubes composite electrode. Appl Phys A 119(4):1413–1422. https://doi.org/10.1007/s00339-015-9114-3

    Article  CAS  Google Scholar 

  20. Tahir M (2019) La-modified TiO2/carbon nanotubes assembly nanocomposite for efficient photocatalytic hydrogen evolution from glycerol-water mixture. Int J Hydrogen Energy 44(7):3711–3725. https://doi.org/10.1016/j.ijhydene.2018.12.095

    Article  CAS  Google Scholar 

  21. Momeni MM, Akbarnia M (2021) Photoelectrochemical, photocatalytic and electrochemical hydrogen peroxide production using Fe/S-codoped TiO2 nanotubes as new visible-light-absorbing photocatalysts. Appl Phys A 127(6):1–19. https://doi.org/10.1007/s00339-021-04574-x

    Article  CAS  Google Scholar 

  22. Taib MAA, Razak KA, Jaafar M, Lockman Z (2017) Initial growth study of TiO2 nanotube arrays anodised in KOH/fluoride/ethylene glycol electrolyte. Mater Des 128:195–205. https://doi.org/10.1016/j.matdes.2017.04.097

    Article  CAS  Google Scholar 

  23. Raja KS, Gandhi T, Misra M (2007) Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem Commun 9(5):1069–1076. https://doi.org/10.1016/j.elecom.2006.12.024

    Article  CAS  Google Scholar 

  24. Regonini D, Groff A, Sorarù GD, Clemens FJ (2015) Photoelectrochemical study of anodized TiO2 nanotubes prepared using low and high H2O contents. Electrochim Acta 186(Supplement C):101–111. https://doi.org/10.1016/j.electacta.2015.10.162

    Article  CAS  Google Scholar 

  25. Sun Y, Zhao Q, Wang G, Yan K (2017) Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. J Alloys Compd 711:514–520. https://doi.org/10.1016/j.jallcom.2017.03.007

    Article  CAS  Google Scholar 

  26. Valota A, LeClere D, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson G (2009) Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim Acta 54(18):4321–4327. https://doi.org/10.1016/j.electacta.2009.02.098

    Article  CAS  Google Scholar 

  27. Yu D, Song Y, Zhu X, Yang C, Yang B, Xiao H (2013) Fabrication of bundle-free TiO2 nanotube arrays with wide open top via a modified two-step anodization process. Mater Lett 109:211–213. https://doi.org/10.1016/j.matlet.2013.07.099

    Article  CAS  Google Scholar 

  28. Paulose M, Peng L, Popat KC, Varghese OK, LaTempa TJ, Bao N, Desai TA, Grimes CA (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 319(1–2):199–205. https://doi.org/10.1016/j.memsci.2008.03.050

    Article  CAS  Google Scholar 

  29. Joseph S, Sagayaraj P (2015) A cost effective approach for developing substrate stable TiO2 nanotube arrays with tuned morphology: a comprehensive study on the role of H2O2 and anodization potential. New J Chem 39(7):5402–5409. https://doi.org/10.1039/C5NJ00565E

    Article  CAS  Google Scholar 

  30. Allam NK, Shankar K, Grimes CA (2008) Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. J Mater Chem 18(20):2341–2348. https://doi.org/10.1039/B718580D

    Article  CAS  Google Scholar 

  31. Sreekantan S, Wei LC, Lockman Z (2011) Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2. J Electrochem Soc 158(12):C397–C402. https://doi.org/10.1149/2.020112jes

    Article  CAS  Google Scholar 

  32. Wang Y, Wu Y, Qin Y, Xu G, Hu X, Cui J, Zheng H, Hong Y, Zhang X (2011) Rapid anodic oxidation of highly ordered TiO2 nanotube arrays. J Alloys Compd 509(14):L157–L160. https://doi.org/10.1016/j.jallcom.2011.01.096

    Article  CAS  Google Scholar 

  33. Bashirom N, Razak KA, Lockman Z (2017) Synthesis of freestanding amorphous ZrO2 nanotubes by anodization and their application in photoreduction of Cr (VI) under visible light. Surf Coat Technol 320:371–376. https://doi.org/10.1016/j.surfcoat.2016.12.026

    Article  CAS  Google Scholar 

  34. Lai CW, Sreekantan S, Lockman Z (2012) Photoelectrochemical behaviour of uniform growth TiO2 nanotubes via bubble blowing synthesised in ethylene glycol with hydrogen peroxide. J Nanosci Nanotechnol 12(5):4057–4066. https://doi.org/10.1166/jnn.2012.5873

    Article  CAS  PubMed  Google Scholar 

  35. Khairul K, Ismail S (2016) Effect of agitation mechanism on the anodization process of titanium dioxide nanotube arrays. Proc Mech Eng Res Day 2016:151–152

    Google Scholar 

  36. Mustafa I (2019) Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem J 144:397–402. https://doi.org/10.1016/j.microc.2018.09.032

    Article  CAS  Google Scholar 

  37. Gulati K, Aw MS, Losic D (2012) Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. Int J Nanomed 7:2069. https://doi.org/10.2147/IJN.S29917

    Article  CAS  Google Scholar 

  38. Sun Y, Zhao Q, Wang G, Yan K (2017) Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. J Alloys Compd 711(Supplement C):514–520. https://doi.org/10.1016/j.jallcom.2017.03.007

    Article  CAS  Google Scholar 

  39. Jaroenworaluck A, Regonini D, Bowen C, Stevens R (2008) Nucleation and early growth of anodized TiO2 film. J Mater Res 23(8):2116–2124. https://doi.org/10.1557/JMR.2008.0276

    Article  CAS  Google Scholar 

  40. Berger S, Kunze J, Schmuki P, Valota AT, LeClere DJ, Skeldon P, Thompson GE (2010) Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J Electrochem Soc 157(1):C18–C23. https://doi.org/10.1149/1.3251338

    Article  CAS  Google Scholar 

  41. Albu SP, Schmuki P (2013) Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochim Acta 91:90–95. https://doi.org/10.1016/j.electacta.2012.12.094

    Article  CAS  Google Scholar 

  42. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621(2):254–266. https://doi.org/10.1016/j.jelechem.2008.01.005

    Article  CAS  Google Scholar 

  43. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R Rep 74(12):377–406. https://doi.org/10.1016/j.mser.2013.10.001

    Article  Google Scholar 

  44. Zahran R, Leal JR, Valverde MR, Vílchez MC (2016) Effect of Hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion. PLoS ONE 11(11):e0165296. https://doi.org/10.1371/journal.pone.0165296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939. https://doi.org/10.1002/anie.201001374

    Article  CAS  Google Scholar 

  46. Indira K, Mudali UK, Nishimura T, Rajendran N (2015) A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of bio-and tribo-corrosion 1(4):1–22. https://doi.org/10.1007/s40735-015-0024-x

    Article  Google Scholar 

  47. Hou C, Hu B, Zhu J (2018) Photocatalytic degradation of methylene blue over TiO2 pretreated with varying concentrations of NaOH. Catalysts 8(12):575. https://doi.org/10.3390/catal8120575

    Article  CAS  Google Scholar 

  48. Štrbac D, Aggelopoulos CA, Štrbac G, Dimitropoulos M, Novaković M, Ivetić T, Yannopoulos SN (2018) Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture. Process Saf Environ Prot 113:174–183. https://doi.org/10.1016/j.psep.2017.10.007

    Article  CAS  Google Scholar 

  49. Dariani R, Esmaeili A, Mortezaali A, Dehghanpour S (2016) Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127(18):7143–7154. https://doi.org/10.1016/j.ijleo.2016.04.026

    Article  CAS  Google Scholar 

  50. Tichapondwa SM, Newman J, Kubheka O (2020) Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys Chem Earth Parts A/B/C 118:102900. https://doi.org/10.1016/j.pce.2020.102900

    Article  Google Scholar 

  51. Yasin SA, Abbas JA, Ali MM, Saeed IA, Ahmed IH (2020) Methylene blue photocatalytic degradation by TiO2 nanoparticles supported on PET nanofibres. Mater Today Proc 20:482–487. https://doi.org/10.1016/j.matpr.2019.09.174

    Article  CAS  Google Scholar 

  52. Momeni MM, Akbarnia M, Ghayeb Y (2020) Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: alcohol series. Int J Hydrogen Energy 45(58):33552–33562. https://doi.org/10.1016/j.ijhydene.2020.09.112

    Article  CAS  Google Scholar 

  53. Ghasemi Z, Younesi H, Zinatizadeh AA (2016) Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. J Taiwan Inst Chem Eng 65:357–366. https://doi.org/10.1016/j.jtice.2016.05.039

    Article  CAS  Google Scholar 

  54. Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2xBx under visible irradiation. J Am Chem Soc 126(15):4782–4783. https://doi.org/10.1021/ja0396753

    Article  CAS  PubMed  Google Scholar 

  55. Wu G, Wen J, Nigro S, Chen A (2010) One-step synthesis of N- and F-codoped mesoporous TiO2 photocatalysts with high visible light activity. Nanotechnology. https://doi.org/10.1088/0957-4484/21/8/085701

    Article  PubMed  Google Scholar 

  56. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026. https://doi.org/10.1039/C4RA06658H

    Article  CAS  Google Scholar 

  57. Liu H, Wang D, Ji L, Li J, Liu S, Liu X, Jiang S (2010) A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity. J Chromatogr A 1217(12):1898–1903. https://doi.org/10.1016/j.chroma.2010.01.080

    Article  CAS  PubMed  Google Scholar 

  58. Taib MAA, Alias N, Jaafar M, Razak KA, Tan WK, Shahbudin IP, Kawamura G, Matsuda A, Lockman Z (2020) Formation of grassy TiO2 nanotube thin film by anodisation in peroxide electrolyte for Cr (VI) removal under ultraviolet radiation. Nanotechnology 31(43):435605. https://doi.org/10.1088/1361-6528/aba3d8

    Article  CAS  PubMed  Google Scholar 

  59. Sreekantan S, Saharudin KA, Lockman Z, Tzu TW (2010) Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. Nanotechnology 21(36):365603. https://doi.org/10.1088/0957-4484/21/36/365603

    Article  CAS  PubMed  Google Scholar 

  60. Taib MAA, Razak KA, Jaafar M, Lockman Z (2017) Initial growth study of TiO2 nanotube arrays anodised in KOH/fluoride/ethylene glycol electrolyte. Mater Des 128(Supplement C):195–205. https://doi.org/10.1016/j.matdes.2017.04.097

    Article  CAS  Google Scholar 

  61. Nyein N, Tan WK, Kawamura G, Matsuda A, Lockman Z (2016) Anodic Ag/TiO2 nanotube array formation in NaOH/fluoride/ethylene glycol electrolyte as a photoanode for dye-sensitized solar cells. Nanotechnology 27(35):355605. https://doi.org/10.1088/0957-4484/27/35/355605

    Article  CAS  PubMed  Google Scholar 

  62. Montakhab E, Rashchi F, Sheibani S (2020) Modification and photocatalytic activity of open channel TiO2 nanotubes array synthesized by anodization process. Appl Surf Sci 534:147581. https://doi.org/10.1016/j.apsusc.2020.147581

    Article  CAS  Google Scholar 

  63. Ribeiro B, Offoiach R, Rahimi E, Salatin E, Lekka M, Fedrizzi L (2021) On growth and morphology of TiO2 nanotubes on Ti6Al4V by anodic oxidation in ethylene glycol electrolyte: influence of microstructure and anodization parameters. Materials 14(10):2540. https://doi.org/10.3390/ma14102540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Malaysia Ministry of Higher Education – Fundamental Research Grant Scheme (FRGS/1/2021/STG05/UiTM/02/9). The authors also acknowledge the materials, facilities, and financial supports provided by University Teknologi MARA, Cawangan Pulau Pinang, Universiti Sains Malaysia and Toyohashi University of Technology, Japan. A. Matsuda and G. Kawamura acknowledge the JSPW KAKENHI (grant numbers 18H03841 and 21K18823 for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norain Isa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isa, N., Mohamad Nor, N., Wan Kamis, W.Z. et al. Anodized TiO2 nanotubes using Ti wire in fluorinated ethylene glycol with air bubbles for removal of methylene blue dye. J Appl Electrochem 52, 173–188 (2022). https://doi.org/10.1007/s10800-021-01644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01644-z

Keywords

Navigation